The Effect of Chitosan and Cooking Methods on Heterocyclic Aromatic Amines Formation of Beluga Fillet

Document Type : Original Paper

Authors

1 PhD. Graduated, Department of Seafood Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Associate Professor, Department of Seafood Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

The purpose of this study was to use the effectiveness of different chitosan's and cooking methods on the formation of heterocyclic aromatic amines in fish fillet of Beluga (Huso huso). For this purpose, the natural preservative effect of 1% acid-soluble chitosan and 1% oligosaccharide chitosan on days 0, 8 and 16 was used to determine the proximate composition, pH, PV, TBA, TVN and the total TVC microbial load in the Huso huso. The sample containing 1% acid-soluble chitosan showed the least change and the differences among treatment were significant (p < /em>≤0.05). Also, in evaluating the heterocyclic amines (HAAs) in cooked samples , HAAs and cooking loss changes in all treatments increased during cooking at 0, 8, and 16 days after refrigerated storage (p < /em>≤0.05). The fried samples with 1% oligosaccharide and acid soluble chitosan had the least amount of HAAs and cooking loss. The results of this study showed that chitosan 1% could prevent corruption in the fish fillet during storage in the refrigerator and could prevent the production of harmful and mutagenic compounds during cooking.

Keywords

Alimentarius Codex. (2003). Code of practice for fish and fishery products. CAC/RCP 52. In: Rome: FAO/WHO.
AOAC. (2005). Association of Official Agricultural Chemists Official. Methods of Analysis of the Association of Analytical Chemists. In: AOAC Arlington
Chantarasataporn, P., Yoksan, R., Visessanguan, W., & Chirachanchai, S. (2013). Water-based nano-sized chitin and chitosan as seafood additive through a case study of Pacific white shrimp (Litopenaeus vannamei). Food Hydrocolloids, 32(2), 341-348. doi:https://doi.org/10.1016/j.foodhyd.2013.01.011
Costa, M., Viegas, O., Melo, A., Petisca, C., Pinho, O., & Ferreira, I. M. (2009). Heterocyclic aromatic amine formation in barbecued sardines (Sardina pilchardus) and Atlantic salmon (Salmo salar). Journal of agricultural and food chemistry, 57(8), 3173-3179. doi:https://doi.org/10.1021/jf8035808
Dutta, P. K., Dutta, J., & Tripathi, V. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research, 63(1), 20-31
Egan, H., & Sawyer, R. (1997). Pearsons Chemical Analysis of Foods (9 ed.)
Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y., & Chi, Y. (2009). Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food chemistry, 115(1), 66-70. doi:https://doi.org/10.1016/j.foodchem.2008.11.060
Farajzadeh, F., Motamedzadegan, A., Shahidi, S.-A., & Hamzeh, S. (2016). The effect of chitosan-gelatin coating on the quality of shrimp (Litopenaeus vannamei) under refrigerated condition. Food Control, 67, 163-170. doi:https://doi.org/10.1016/j.foodcont.2016.02.040
Gladyshev, M. I., Sushchik, N. N., Gubanenko, G. A., Demirchieva, S. M., & Kalachova, G. S. (2006). Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon (Oncorhynchus gorbuscha). Food chemistry, 96(3), 446-451. doi:https://doi.org/10.1016/j.foodchem.2005.02.034
Gram, L., & Huss, H. H. (1996). Microbiological spoilage of fish and fish products. International journal of food microbiology, 33(1), 121-137. doi:https://doi.org/10.1016/0168-1605(96)01134-8
Huss, H. H., Jeppesen, V. F., Johansen, C., & Gram, L. (1995). Biopreservation of fish products—a review of recent approaches and results. Journal of Aquatic Food Product Technology, 4(2), 5-26. doi:https://doi.org/10.1300/J030v04n02_02
Jeon, Y.-J., Kamil, J. Y., & Shahidi, F. (2002). Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. Journal of agricultural and food chemistry, 50(18), 5167-5178. doi:https://doi.org/10.1021/jf011693l
Johansson, M., & Jägerstad, M. (1996). Influence of pro-and antioxidants on the formation of mutagenic-carcinogenic heterocyclic amines in a model system. Food chemistry, 56(1), 69-75. doi:https://doi.org/10.1016/0308-8146(95)00160-3
Kachanechai, T., Jantawat, P., & Pichyangkura, R. (2008). The influence of chitosan on physico-chemical properties of chicken salt-soluble protein gel. Food Hydrocolloids, 22(1), 74-83. doi:https://doi.org/10.1016/j.foodhyd.2007.04.010
Kalte, S., Alizadeh Doghikolaee, E., & Yousef Elahi, M. (2014). Effect of edible chitosan-gelatin coating on the quality characteristics and shelf life of fish finger of Hypophthalmichthys molitrix during refrigerated storage. Fisheries Science and Technology, 3(1), 45-55.  (in Persian)
Kilincceker, O., Dogan, I. S., & Kucukoner, E. (2009). Effect of edible coatings on the quality of frozen fish fillets. LWT-Food science and Technology, 42(4), 868-873. doi:https://doi.org/10.1016/j.lwt.2008.11.003
Kostaki, M., Giatrakou, V., Savvaidis, I. N., & Kontominas, M. G. (2009). Combined effect of MAP and thyme essential oil on the microbiological, chemical and sensory attributes of organically aquacultured sea bass (Dicentrarchus labrax) fillets. Food microbiology, 26(5), 475-482. doi:https://doi.org/10.1016/j.fm.2009.02.008
Lin, C.-C., & Lin, C.-S. (2005). Enhancement of the storage quality of frozen bonito fillets by glazing with tea extracts. Food Control, 16(2), 169-175. doi:https://doi.org/10.1016/j.foodcont.2004.01.007
Lin, K.-W., & Chao, J.-Y. (2001). Quality characteristics of reduced-fat Chinese-style sausage as related to chitosan's molecular weight. Meat Science, 59(4), 343-351. doi:https://doi.org/10.1016/S0309-1740(01)00084-5
Lu, F., Kuhnle, G. K., & Cheng, Q. (2017). Vegetable oil as fat replacer inhibits formation of heterocyclic amines and polycyclic aromatic hydrocarbons in reduced fat pork patties. Food Control, 81, 113-125. doi:https://doi.org/10.1016/j.foodcont.2017.05.043
Mexis, S., Chouliara, E., & Kontominas, M. (2009). Combined effect of an oxygen absorber and oregano essential oil on shelf life extension of rainbow trout fillets stored at 4 C. Food microbiology, 26(6), 598-605. doi:https://doi.org/10.1016/j.fm.2009.04.002
Milić, B. i. L., Djilas, S. M., & C̆anadanović-Brunet, J. M. (1993). Synthesis of some heterocyclic aminoimidazoazarenes. Food chemistry, 46(3), 273-276. doi:https://doi.org/10.1016/0308-8146(93)90118-Y
Mohan, C., Ravishankar, C., Lalitha, K., & Gopal, T. S. (2012). Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella longiceps) during chilled storage. Food Hydrocolloids, 26(1), 167-174. doi:https://doi.org/10.1016/j.foodhyd.2011.05.005
Naghibi, S. S., Ehsani, A., Tajik, H., Talebi, A., & Delirezh, N. (2016). Effect of chitosan enriched with lycopene coating on fatty acid profile and fat oxidation parameters of rainbow trout fillet during refrigerated storage. Food Hygiene, 6(1 (21)), 29-44. (in Persian)
No, H., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: a review. Journal of food science, 72(5), R87-R100. doi:https://doi.org/10.1111/j.1750-3841.2007.00383.x
Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food chemistry, 120(1), 193-198. doi:https://doi.org/10.1016/j.foodchem.2009.10.006
Oz, F., Kaban, G., & Kaya, M. (2010). Effects of cooking methods and levels on formation of heterocyclic aromatic amines in chicken and fish with Oasis extraction method. LWT-Food science and Technology, 43(9), 1345-1350. doi:https://doi.org/10.1016/j.lwt.2010.04.014
Oz, F., & Kaya, M. (2011). The inhibitory effect of black pepper on formation of heterocyclic aromatic amines in high-fat meatball. Food Control, 22(3-4), 596-600. doi:https://doi.org/10.1016/j.foodcont.2010.10.010
Oz, F., Kızıl, M., Zaman, A., & Turhan, S. (2016). The effects of direct addition of low and medium molecular weight chitosan on the formation of heterocyclic aromatic amines in beef chop. LWT-Food science and Technology, 65, 861-867. doi:https://doi.org/10.1016/j.lwt.2015.09.023
Razavi shirazi, H. (2006). Seafood technologyPrinciples handeling and processing (Vol. 2): Nagsh mehr, Tehran.(in Persian)
Sallam, K. I. (2007). Prevalence of Campylobacter in chicken and chicken by-products retailed in Sapporo area, Hokkaido, Japan. Food Control, 18(9), 1113-1120. doi:https://doi.org/10.1016/j.foodcont.2006.07.005
Sathivel, S., Liu, Q., Huang, J., & Prinyawiwatkul, W. (2007). The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. Journal of Food Engineering, 83(3), 366-373. doi:https://doi.org/10.1016/j.jfoodeng.2007.03.009
Sayas-Barberá, E., Quesada, J., Sánchez-Zapata, E., Viuda-Martos, M., Fernández-López, F., Pérez-Alvarez, J., & Sendra, E. (2011). Effect of the molecular weight and concentration of chitosan in pork model burgers. Meat Science, 88(4), 740-749. doi:https://doi.org/10.1016/j.meatsci.2011.03.007
Shabbir, M. A., Raza, A., Anjum, F. M., Khan, M. R., & Suleria, H. A. R. (2015). Effect of thermal treatment on meat proteins with special reference to heterocyclic aromatic amines (HAAs). Critical reviews in food science and nutrition, 55(1), 82-93. doi:https://doi.org/10.1080/10408398.2011.647122
Shahidi, F., Arachchi, J. K. V., & Jeon, Y.-J. (1999). Food applications of chitin and chitosans. Trends in food science & technology, 10(2), 37-51. doi:https://doi.org/10.1016/S0924-2244(99)00017-5
Souza, B. W., Cerqueira, M. A., Ruiz, H. c. A., Martins, J. T., Casariego, A., Teixeira, J. A., & Vicente, A. A. (2010). Effect of chitosan-based coatings on the shelf life of salmon (Salmo salar). Journal of agricultural and food chemistry, 58(21), 11456-11462. doi:https://doi.org/10.1021/jf102366k
Sugimura, T., Wakabayashi, K., Nakagama, H., & Nagao, M. (2004). Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer science, 95(4), 290-299. doi:https://doi.org/10.1111/j.1349-7006.2004.tb03205.x
ur Rahman, U., Sahar, A., Khan, M. I., & Nadeem, M. (2014). Production of heterocyclic aromatic amines in meat: Chemistry, health risks and inhibition. A review. LWT-Food science and Technology, 59(1), 229-233. doi:https://doi.org/10.1016/j.lwt.2014.06.005
Viegas, O., Novo, P., Pinto, E., Pinho, O., & Ferreira, I. (2012). Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. Food and Chemical Toxicology, 50(6), 2128-2134. doi:https://doi.org/10.1016/j.fct.2012.03.051
Yanar, Y., Celik, M., & Akamca, E. (2006). Effects of brine concentration on shelf-life of hot-smoked tilapia (Oreochromis niloticus) stored at 4 C. Food chemistry, 97(2), 244-247. doi:https://doi.org/10.1016/j.foodchem.2005.03.043
Zeng, M., Wang, J., Zhang, M., Chen, J., He, Z., Qin, F., . . . Chen, J. (2018). Inhibitory effects of Sichuan pepper (Zanthoxylum bungeanum) and sanshoamide extract on heterocyclic amine formation in grilled ground beef patties. Food chemistry, 239, 111-118. doi:https://doi.org/10.1016/j.foodchem.2017.06.097
CAPTCHA Image
Volume 9, Issue 2
July 2020
Pages 175-188
  • Receive Date: 07 July 2019
  • Revise Date: 28 April 2020
  • Accept Date: 23 May 2020