نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانش‌آموختۀ دکتری، گروه فرآوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار، گروه فرآوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

10.22101/jrifst.2020.191025.1097

چکیده

در این پژوهش از کیتوزان و روش‏های پخت روی شکل‏گیری آمین‏های آروماتیک حلقوی در فیلۀ فیل‌ماهی (Huso huso) برای حفظ کیفیت ماهی و جلوگیری از تشکیل ترکیبات مضر بعد از پخت استفاده گردید. لذا اثر کیتوزان محلول در اسید 1 درصد و کیتوزان الیگوساکاریدی 1 درصد در روزهای صفر، 8 و 16 برای تعیین pH، تیوباربیتوریک اسید، عدد پراکسید، بازهای نیتروژن فرار و بار میکروبی کل در فیلة ‌فیل‌ماهی بررسی شد. کمترین میزان تغییرات در نمونۀ حاوی کیتوزان محلول در اسید مشاهده گردید (0/05≥P). همچنین در بررسی ترکیبات آمین‏‌های آروماتیک حلقوی (HAAs) در نمونه‌‏های پخته‌شده، مقادیر HAAs و اُفت پخت در همۀ تیمارها طی طبخ در روز صفر، 8 و 16 افزایش یافت (0/05≥P). نمونۀ حاوی کیتوزان محلول در اسید 1 درصد و کیتوزان الیگوساکاریدی 1 درصد سرخ‌شده کمترین و نمونه‏های کبابی بیشترین میزان HAAs و اُفت پخت را نشان داد. مطالعۀ حاضر نشان‌داد که کیتوزان می‏تواند در کاهش فساد در فیلۀ فیل‌ماهی طی نگهداری در یخچال و تولید ترکیبات مضر و جهش‌زا حاصل از پخت، مؤثر باشد.

کلیدواژه‌ها

رضوی‌شیرازی، ح. (1381). تکنولوژی فرآورده‌های دریایی: علم فرآوری (جلد دوم): انتشارات نقش مهر.

کلته، ص.، دوغی‌کلائی، ا. ع.، و یوسف‌الهی، م. (1393). تأثیر پوشش خوراکی کیتوزان-ژلاتین برخصوصیات کیفی و زمان ماندگاری فیش فینگر کپور نقره‌ای (Hypophthalmichthys molitrix) طی نگهداری در یخچال. علوم و فنون شیلات، 3(1)، 45-55.

نقیبی، س. س.، احسانی، ع.، تاجیک، ح.، طالبی، ع.، و دلیرژ، ن. (1395). تأثیر پوشش کیتوزان غنی‌شده با لیکوپن بر پروفایل اسیدهای چرب و پارامترهای اکسیداسیون چربی فیله ماهی قزل‌آلای رنگین‌کمان در طول دوره نگهداری در یخچال. بهداشت مواد غذایی، 6(1)، 29-44.

Alimentarius Codex. (2003). Code of practice for fish and fishery products. CAC/RCP 52. In: Rome: FAO/WHO.

AOAC. (2005). Association of Official Agricultural Chemists Official. Methods of Analysis of the Association of Analytical Chemists. In: AOAC Arlington

Chantarasataporn, P., Yoksan, R., Visessanguan, W., & Chirachanchai, S. (2013). Water-based nano-sized chitin and chitosan as seafood additive through a case study of Pacific white shrimp (Litopenaeus vannamei). Food Hydrocolloids, 32(2), 341-348. doi:https://doi.org/10.1016/j.foodhyd.2013.01.011

Costa, M., Viegas, O., Melo, A., Petisca, C., Pinho, O., & Ferreira, I. M. (2009). Heterocyclic aromatic amine formation in barbecued sardines (Sardina pilchardus) and Atlantic salmon (Salmo salar). Journal of agricultural and food chemistry, 57(8), 3173-3179. doi:https://doi.org/10.1021/jf8035808

Dutta, P. K., Dutta, J., & Tripathi, V. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research, 63(1), 20-31

Egan, H., & Sawyer, R. (1997). Pearsons Chemical Analysis of Foods (9 ed.)

Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y., & Chi, Y. (2009). Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food chemistry, 115(1), 66-70. doi:https://doi.org/10.1016/j.foodchem.2008.11.060

Farajzadeh, F., Motamedzadegan, A., Shahidi, S.-A., & Hamzeh, S. (2016). The effect of chitosan-gelatin coating on the quality of shrimp (Litopenaeus vannamei) under refrigerated condition. Food Control, 67, 163-170. doi:https://doi.org/10.1016/j.foodcont.2016.02.040

Gladyshev, M. I., Sushchik, N. N., Gubanenko, G. A., Demirchieva, S. M., & Kalachova, G. S. (2006). Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon (Oncorhynchus gorbuscha). Food chemistry, 96(3), 446-451. doi:https://doi.org/10.1016/j.foodchem.2005.02.034

Gram, L., & Huss, H. H. (1996). Microbiological spoilage of fish and fish products. International journal of food microbiology, 33(1), 121-137. doi:https://doi.org/10.1016/0168-1605(96)01134-8

Huss, H. H., Jeppesen, V. F., Johansen, C., & Gram, L. (1995). Biopreservation of fish products—a review of recent approaches and results. Journal of Aquatic Food Product Technology, 4(2), 5-26. doi:https://doi.org/10.1300/J030v04n02_02

Jeon, Y.-J., Kamil, J. Y., & Shahidi, F. (2002). Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. Journal of agricultural and food chemistry, 50(18), 5167-5178. doi:https://doi.org/10.1021/jf011693l

Johansson, M., & Jägerstad, M. (1996). Influence of pro-and antioxidants on the formation of mutagenic-carcinogenic heterocyclic amines in a model system. Food chemistry, 56(1), 69-75. doi:https://doi.org/10.1016/0308-8146(95)00160-3

Kachanechai, T., Jantawat, P., & Pichyangkura, R. (2008). The influence of chitosan on physico-chemical properties of chicken salt-soluble protein gel. Food Hydrocolloids, 22(1), 74-83. doi:https://doi.org/10.1016/j.foodhyd.2007.04.010

Kalte, S., Alizadeh Doghikolaee, E., & Yousef Elahi, M. (2014). Effect of edible chitosan-gelatin coating on the quality characteristics and shelf life of fish finger of Hypophthalmichthys molitrix during refrigerated storage. Fisheries Science and Technology, 3(1), 45-55.  (in Persian)

Kilincceker, O., Dogan, I. S., & Kucukoner, E. (2009). Effect of edible coatings on the quality of frozen fish fillets. LWT-Food science and Technology, 42(4), 868-873. doi:https://doi.org/10.1016/j.lwt.2008.11.003

Kostaki, M., Giatrakou, V., Savvaidis, I. N., & Kontominas, M. G. (2009). Combined effect of MAP and thyme essential oil on the microbiological, chemical and sensory attributes of organically aquacultured sea bass (Dicentrarchus labrax) fillets. Food microbiology, 26(5), 475-482. doi:https://doi.org/10.1016/j.fm.2009.02.008

Lin, C.-C., & Lin, C.-S. (2005). Enhancement of the storage quality of frozen bonito fillets by glazing with tea extracts. Food Control, 16(2), 169-175. doi:https://doi.org/10.1016/j.foodcont.2004.01.007

Lin, K.-W., & Chao, J.-Y. (2001). Quality characteristics of reduced-fat Chinese-style sausage as related to chitosan's molecular weight. Meat Science, 59(4), 343-351. doi:https://doi.org/10.1016/S0309-1740(01)00084-5

Lu, F., Kuhnle, G. K., & Cheng, Q. (2017). Vegetable oil as fat replacer inhibits formation of heterocyclic amines and polycyclic aromatic hydrocarbons in reduced fat pork patties. Food Control, 81, 113-125. doi:https://doi.org/10.1016/j.foodcont.2017.05.043

Mexis, S., Chouliara, E., & Kontominas, M. (2009). Combined effect of an oxygen absorber and oregano essential oil on shelf life extension of rainbow trout fillets stored at 4 C. Food microbiology, 26(6), 598-605. doi:https://doi.org/10.1016/j.fm.2009.04.002

Milić, B. i. L., Djilas, S. M., & C̆anadanović-Brunet, J. M. (1993). Synthesis of some heterocyclic aminoimidazoazarenes. Food chemistry, 46(3), 273-276. doi:https://doi.org/10.1016/0308-8146(93)90118-Y

Mohan, C., Ravishankar, C., Lalitha, K., & Gopal, T. S. (2012). Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella longiceps) during chilled storage. Food Hydrocolloids, 26(1), 167-174. doi:https://doi.org/10.1016/j.foodhyd.2011.05.005

Naghibi, S. S., Ehsani, A., Tajik, H., Talebi, A., & Delirezh, N. (2016). Effect of chitosan enriched with lycopene coating on fatty acid profile and fat oxidation parameters of rainbow trout fillet during refrigerated storage. Food Hygiene, 6(1 (21)), 29-44. (in Persian)

No, H., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: a review. Journal of food science, 72(5), R87-R100. doi:https://doi.org/10.1111/j.1750-3841.2007.00383.x

Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food chemistry, 120(1), 193-198. doi:https://doi.org/10.1016/j.foodchem.2009.10.006

Oz, F., Kaban, G., & Kaya, M. (2010). Effects of cooking methods and levels on formation of heterocyclic aromatic amines in chicken and fish with Oasis extraction method. LWT-Food science and Technology, 43(9), 1345-1350. doi:https://doi.org/10.1016/j.lwt.2010.04.014

Oz, F., & Kaya, M. (2011). The inhibitory effect of black pepper on formation of heterocyclic aromatic amines in high-fat meatball. Food Control, 22(3-4), 596-600. doi:https://doi.org/10.1016/j.foodcont.2010.10.010

Oz, F., Kızıl, M., Zaman, A., & Turhan, S. (2016). The effects of direct addition of low and medium molecular weight chitosan on the formation of heterocyclic aromatic amines in beef chop. LWT-Food science and Technology, 65, 861-867. doi:https://doi.org/10.1016/j.lwt.2015.09.023

Razavi shirazi, H. (2006). Seafood technology: Principles handeling and processing (Vol. 2): Nagsh mehr, Tehran.(in Persian)

Sallam, K. I. (2007). Prevalence of Campylobacter in chicken and chicken by-products retailed in Sapporo area, Hokkaido, Japan. Food Control, 18(9), 1113-1120. doi:https://doi.org/10.1016/j.foodcont.2006.07.005

Sathivel, S., Liu, Q., Huang, J., & Prinyawiwatkul, W. (2007). The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. Journal of Food Engineering, 83(3), 366-373. doi:https://doi.org/10.1016/j.jfoodeng.2007.03.009

Sayas-Barberá, E., Quesada, J., Sánchez-Zapata, E., Viuda-Martos, M., Fernández-López, F., Pérez-Alvarez, J., & Sendra, E. (2011). Effect of the molecular weight and concentration of chitosan in pork model burgers. Meat Science, 88(4), 740-749. doi:https://doi.org/10.1016/j.meatsci.2011.03.007

Shabbir, M. A., Raza, A., Anjum, F. M., Khan, M. R., & Suleria, H. A. R. (2015). Effect of thermal treatment on meat proteins with special reference to heterocyclic aromatic amines (HAAs). Critical reviews in food science and nutrition, 55(1), 82-93. doi:https://doi.org/10.1080/10408398.2011.647122

Shahidi, F., Arachchi, J. K. V., & Jeon, Y.-J. (1999). Food applications of chitin and chitosans. Trends in food science & technology, 10(2), 37-51. doi:https://doi.org/10.1016/S0924-2244(99)00017-5

Souza, B. W., Cerqueira, M. A., Ruiz, H. c. A., Martins, J. T., Casariego, A., Teixeira, J. A., & Vicente, A. A. (2010). Effect of chitosan-based coatings on the shelf life of salmon (Salmo salar). Journal of agricultural and food chemistry, 58(21), 11456-11462. doi:https://doi.org/10.1021/jf102366k

Sugimura, T., Wakabayashi, K., Nakagama, H., & Nagao, M. (2004). Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer science, 95(4), 290-299. doi:https://doi.org/10.1111/j.1349-7006.2004.tb03205.x

ur Rahman, U., Sahar, A., Khan, M. I., & Nadeem, M. (2014). Production of heterocyclic aromatic amines in meat: Chemistry, health risks and inhibition. A review. LWT-Food science and Technology, 59(1), 229-233. doi:https://doi.org/10.1016/j.lwt.2014.06.005

Viegas, O., Novo, P., Pinto, E., Pinho, O., & Ferreira, I. (2012). Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. Food and Chemical Toxicology, 50(6), 2128-2134. doi:https://doi.org/10.1016/j.fct.2012.03.051

Yanar, Y., Celik, M., & Akamca, E. (2006). Effects of brine concentration on shelf-life of hot-smoked tilapia (Oreochromis niloticus) stored at 4 C. Food chemistry, 97(2), 244-247. doi:https://doi.org/10.1016/j.foodchem.2005.03.043

Zeng, M., Wang, J., Zhang, M., Chen, J., He, Z., Qin, F., . . . Chen, J. (2018). Inhibitory effects of Sichuan pepper (Zanthoxylum bungeanum) and sanshoamide extract on heterocyclic amine formation in grilled ground beef patties. Food chemistry, 239, 111-118. doi:https://doi.org/10.1016/j.foodchem.2017.06.097