page contents google-site-verification=IMPxc80Ko8aMAqomw3axo11WILpmIE0RjwZ5gz4rwdA
ORCID iD iconhttps://orcid.org/0000-0002-3006-8220

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد، گروه شیمی، دانشکده فیزیک و شیمی، دانشگاه الزهرا(س)، تهران، ایران

2 دانشیار، گروه شیمی، دانشکده فیزیک و شیمی، دانشگاه الزهرا(س)، تهران، ایران

3 دانشیار، مرکز تحقیقات آنالیز و بیوآنالیز، دانشگاه الزهرا(س)، تهران، ایران

4 دانشیار، مرکز ملی تحقیقات حلال، سازمان غذا و دارو، تهران، ایران

10.22101/jrifst.2020.254631.1194

چکیده

در این پژوهش، نوع و میزان استرول‌های موجود در روغن‌های گیاهی (زیتون، کانولا، ذرت، کنجد و آفتاب‌گردان) و چربی خوک (لارد) با روش استخراج مایع-مایع و آنالیز با کروماتوگرافی گازی-طیف‌سنجی جرمی بررسی شد. همچنین استرول‌های موجود با مقایسۀ طیف جرمی ثبت‌شده با کتابخانۀ دستگاه،‌ شناسایی شدند. به‌منظور اندازه‌گیری کمّی استرول‌ها، منحنی درجه‌بندی با ضریب‌های رگرسیون بزرگ‌تر از 0/99 به‌دست آمد. حد تشخیص روش پیشنهادی برای سه ترکیب بتا-سیتوسترول، کمپسترول و کلسترول به‌ترتیب 0/48، 2/38 و 0/44 میلی‌گرم بر لیتر بود. صحت و دقت روش با محاسبۀ بازیابی و انحراف استاندارد نسبی در یک روز و بین روز محاسبه شد. نتایج بازیابی 109-95 درصد و انحراف استاندارد نسبی کمتر از 9 درصد را نشان دادند. همچنین مشخص شد مقدار کلسترول لارد بیش از 5 برابر روغن‌های دیگر است. در ادامه، مخلوط‌هایی از یک نوع روغن گیاهی (روغن‌زیتون فرابکر) و لارد تهیه و با روش پیشنهادی آنالیز شدند. ارتباط غلظت کلسترول برحسب درصد لارد اضافه‌شده با ضریب همبستگی بزرگ‌تر از 0/99، خطی به‌دست آمد و با استفاده از روش پیشنهادی، تشخیص 1 درصد لارد در روغن‌زیتون با خطای کمتر از 3 درصد امکان‌پذیر بود. از نتایج این روش می‌توان برای تشخیص تقلب در سایر روغن‌های گیاهی (فاقد کلسترول) با چربی‌های حاوی کلسترول نیز استفاده کرد.

کلیدواژه‌ها

Al-Ismail, K. M., Alsaed, A. K., Ahmad, R., & Al-Dabbas, M. (2010). Detection of olive oil adulteration with some plant oils by GLC analysis of sterols using polar column. Food Chemistry, 121(4), 1255-1259. doi:https://doi.org/10.1016/j.foodchem.2010.01.016

Al-Kahtani, H., Abou Arab, A., & Asif, M. (2014). Detection of lard in binary animal fats and vegetable oils mixtures and in some commercial processed foods. International Journal of Nutrition and Food Eegineering, 8(11), 1244-1252. doi:https://doi.org/10.5281/zenodo.1326830

Almeida, C. A. S., Baggio, S. R., Mariutti, L. R. B., & Bragagnolo, N. (2020). One-step rapid extraction of phytosterols from vegetable oils. Food Research International, 130, 108891. doi:https://doi.org/10.1016/j.foodres.2019.108891

Cercaci, L., Rodriguez-Estrada, M. T., & Lercker, G. (2003). Solid-phase extraction–thin-layer chromatography–gas chromatography method for the detection of hazelnut oil in olive oils by determination of esterified sterols. Journal of Chromatography A, 985(1-2), 211-220. doi:https://doi.org/10.1016/S0021-9673(02)01397-3

Codex Alimentarius. (1999). Codex standard for named vegetable oils. Codex stan, 210, 1-13.

Danezis, G. P., Tsagkaris, A. S., Camin, F., Brusic, V., & Georgiou, C. A. (2016). Food authentication: Techniques, trends & emerging approaches. TrAC Trends in Analytical Chemistry, 85, 123-132. doi:https://doi.org/10.1016/j.trac.2016.02.026

Dinh, T. T., Thompson, L. D., Galyean, M. L., Brooks, J. C., Patterson, K. Y., & Boylan, L. M. (2011). Cholesterol content and methods for cholesterol determination in meat and poultry. Comprehensive Reviews in Food Science and Food Safety, 10(5), 269-289. doi:https://doi.org/10.1111/j.1541-4337.2011.00158.x

Ergönül, P. G., & Özbek, Z. A. (2018). Identification of bioactive compounds and total phenol contents of cold pressed oils from safflower and camelina seeds. Journal of Food Measurement and Characterization, 12(4), 2313-2323. doi:https://doi.org/10.1007/s11694-018-9848-7

Esteki, M., Simal-Gandara, J., Shahsavari, Z., Zandbaaf, S., Dashtaki, E., & Vander Heyden, Y. (2018). A review on the application of chromatographic methods, coupled to chemometrics, for food authentication. Food control, 93, 165-182. doi:https://doi.org/10.1016/j.foodcont.2018.06.015

Fadzillah, N. A., Rohman, A., Salleh, R. A., Amin, I., Shuhaimi, M., Farahwahida, M., . . . Khatib, A. (2017). Authentication of butter from lard adulteration using high-resolution of nuclear magnetic resonance spectroscopy and high-performance liquid chromatography. International Journal of Food Properties, 20(9), 2147-2156. doi:https://doi.org/10.1080/10942912.2016.1233428

Filoda, P. F., Fetter, L. F., Fornasier, F., de Souza Schneider, R. d. C., Helfer, G. A., Tischer, B., . . . da Costa, A. B. (2019). Fast methodology for identification of olive oil adulterated with a mix of different vegetable oils. Food Analytical Methods, 12(1), 293-304. doi:https://doi.org/10.1007/s12161-018-1360-5

Gorassini, A., Verardo, G., & Bortolomeazzi, R. (2019). Polymeric reversed phase and small particle size silica gel solid phase extractions for rapid analysis of sterols and triterpene dialcohols in olive oils by GC-FID. Food Chemistry, 283, 177-182. doi:https://doi.org/10.1016/j.foodchem.2018.12.120

Green, H. S., Li, X., De Pra, M., Lovejoy, K. S., Steiner, F., Acworth, I. N., & Wang, S. C. (2020). A rapid method for the detection of extra virgin olive oil adulteration using UHPLC-CAD profiling of triacylglycerols and PCA. Food control, 107, 106773. doi:https://doi.org/10.1016/j.foodcont.2019.106773

Hajjar, G., Rizk, T., Akoka, S., & Bejjani, J. (2019). Cholesterol, a powerful 13C isotopic biomarker. Analytica Chimica Acta, 1089, 115-122. doi:https://doi.org/10.1016/j.aca.2019.09.001

He, P., Wan, X., Wang, C., & Jiao, Y. (2014). Determination of animal oil added in vegetable oil by standard chemical method coupled with image texture analysis technology. International Journal of Innovative Computing, Information and Control, 10(1), 67-80.

Heidari, M., Talebpour, Z., Abdollahpour, Z., Adib, N., Ghanavi, Z., & Aboul-Enein, H. Y. (2020). Discrimination between vegetable oil and animal fat by a metabolomics approach using gas chromatography–mass spectrometry combined with chemometrics. Journal of Food Science and Technology, 1-11. doi:https://doi.org/10.1007/s13197-020-04375-9

Hong, E., Lee, S. Y., Jeong, J. Y., Park, J. M., Kim, B. H., Kwon, K., & Chun, H. S. (2017). Modern analytical methods for the detection of food fraud and adulteration by food category. Journal of the Science of Food and Agriculture, 97(12), 3877-3896. doi:https://doi.org/10.1002/jsfa.8364

International Union of Pure and Applied Chemistry. (1992). Standard Methods for the Analysis of Oils, Fats and Derivatives, 151.   Retrieved from http://old.iupac.org/publications/books/ISBN0632033371_compress.pdf

ISO. (1999). International Standards Official Methods 12228: 1999. Animal and Vegetable Fats and Oils-Determination of Individual and Total Sterols Contents-Gas Chromatographic Method.

Kenar, A., Cicek, B., Arslan, F. N., Akin, G., Elmas, Ş. N. K., & Yilmaz, I. (2019). Electron impact–mass spectrometry fingerprinting and chemometrics for rapid assessment of authenticity of edible oils based on fatty acid profiling. Food Analytical Methods, 12(6), 1369-1381. doi:https://doi.org/10.1007/s12161-019-01472-0

Laakso, P. (2005). Analysis of sterols from various food matrices. European Journal of Lipid Science and Technology, 107(6), 402-410. doi:https://doi.org/10.1002/ejlt.200501134

Li, Y., Chen, S., Chen, H., Guo, P., Li, T., & Xu, Q. (2020). Effect of thermal oxidation on detection of adulteration at low concentrations in extra virgin olive oil: Study based on laser-induced fluorescence spectroscopy combined with KPCA–LDA. Food Chemistry, 309, 125669. doi:https://doi.org/10.1016/j.foodchem.2019.125669

Liao, C.-D., Peng, G.-J., Ting, Y., Chang, M.-H., Tseng, S.-H., Kao, Y.-M., . . . Cheng, H.-F. (2017). Using phytosterol as a target compound to identify edible animal fats adulterated with cooked oil. Food control, 79, 10-16. doi:https://doi.org/10.1016/j.foodcont.2017.03.026

Lioupi, A., Nenadis, N., & Theodoridis, G. (2020). Virgin olive oil metabolomics: A review. Journal of Chromatography B, 122161. doi:https://doi.org/10.1016/j.jchromb.2020.122161

McDowell, D., Defernez, M., Kemsley, E. K., Elliott, C. T., & Koidis, A. (2019). Low vs high field 1h Nmr spectroscopy for the detection of adulteration of cold pressed rapeseed oil with refined oils. LWT, 111, 490-499. doi:https://doi.org/10.1016/j.lwt.2019.05.065

Rohman, A., Che Man, Y. B., Hashim, P., & Ismail, A. (2011). FTIR spectroscopy combined with chemometrics for analysis of lard adulteration in some vegetable oils espectroscopia FTIR combinada con quimiometría para el análisis de adulteración con grasa de cerdo de aceites vegetales. Cyta-Journal of Food, 9(2), 96-101. doi:https://doi.org/10.1080/19476331003774639

Su, T., Wei, P., Wu, L., Guo, Y., Zhao, W., Zhang, Y., . . . Qiu, L. (2019). Development of nucleic acid isolation by non-silica-based nanoparticles and real-time PCR kit for edible vegetable oil traceability. Food Chemistry, 300, 125205. doi:https://doi.org/10.1016/j.foodchem.2019.125205

Thomas, A. (2012). Fats and Fatty Oils: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Tian, L., Zeng, Y., Zheng, X., Chiu, Y., & Liu, T. (2019). Detection of Peanut oil adulteration mixed with Rapeseed Oil using Gas Chromatography and Gas Chromatography–Ion Mobility Spectrometry. Food Analytical Methods, 12(10), 2282-2292. doi:https://doi.org/10.1007/s12161-019-01571-y

Xu, B., Li, P., Ma, F., Wang, X., Matthäus, B., Chen, R., . . . Zhang, Q. (2015). Detection of virgin coconut oil adulteration with animal fats using quantitative cholesterol by GC× GC–TOF/MS analysis. Food Chemistry, 178, 128-135. doi:https://doi.org/10.1016/j.foodchem.2015.01.035

Yan, J., Erasmus, S. W., Toro, M. A., Huang, H., & van Ruth, S. M. (2020). Food fraud: Assessing fraud vulnerability in the extra virgin olive oil supply chain. Food control, 111, 107081. doi:https://doi.org/10.1016/j.foodcont.2019.107081

Yan, J., Oey, S. B., van Leeuwen, S. P., & van Ruth, S. M. (2018). Discrimination of processing grades of olive oil and other vegetable oils by monochloropropanediol esters and glycidyl esters. Food Chemistry, 248, 93-100. doi:https://doi.org/10.1016/j.foodchem.2017.12.025

Zhao, H., Wang, Y., Xu, X., Ren, H., Li, L., Xiang, L., & Zhong, W. (2015). Detection of adulterated vegetable oils containing waste cooking oils based on the contents and ratios of cholesterol, β-sitosterol, and campesterol by gas chromatography/mass spectrometry. Journal of AOAC International, 98(6), 1645-1654. doi:https://doi.org/10.5740/jaoacint.15-112

Zhao, X., Ma, F., Li, P., Li, G., Zhang, L., Zhang, Q., . . . Wang, X. (2015). Simultaneous determination of isoflavones and resveratrols for adulteration detection of soybean and peanut oils by mixed-mode SPE LC–MS/MS. Food Chemistry, 176, 465-471. doi:https://doi.org/10.1016/j.foodchem.2014.12.082