تأثیر پلاسمای سرد بر فعالیت آنزیمی و ویژگی‌های کیفی پالپ انبه

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 استادیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه قاهره، گیزه، مصر

2 استادیار،گروه فرآوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

3 پژوهشگر، مرکز تحقیقات امنیت غذایی، دانشگاه علوم پزشکی سمنان، سمنان، ایران

چکیده

توانایی تولید پلاسمای سرد در شرایط اتمسفری فرصت‌های جدیدی برای ضدعفونی مواد بیولوژیکی ازجمله غذای تازه فراهم می‌کند. این فناوری همچنین برای غیرفعال‌سازی آنزیم‌های درون‌زا، به‌ویژه پلی‌فنول‌ اکسیداز و پراکسیدازها که مسئول واکنش‌های قهوه‌ای‌شدن هستند، استفاده می‌شود. این مطالعه به بررسی تأثیر پلاسمای سرد (DBDP) در غیرفعال‌سازی فعالیت آنزیمی و برخی ویژگی‌های کیفی در پالپ انبه پرداخته است. نتایج نشان داد که تیمار DBDP تا 10 دقیقه منجربه‌کاهش فعالیت‌های پلی‌فنول اکسیداز (10/85 درصد)، پراکسیداز (5/15 درصد) و پکتین متیل‌استراز (5/25 درصد)، شمارش میکروارگانیسم‌های هوازی (16/6 درصد) و تعداد کپک و مخمر (18/8 درصد) شد بهبود در ویژگی‌های فیزیکوشیمیایی (به‌ویژه ویسکوزیته و سفتی) و فیتوشیمیایی (مثل اسید آسکوربیک و فنول) و همچنین پارامتر رنگ با افزایش زمان تیمار DBDP تا 6 دقیقه مشاهده شد. بنابراین این مطالعه تأثیر زمان DBDP بر فعالیت‌های آنزیمی و خصوصیات کیفی پالپ انبه را فراهم کرده است. نتایج نشان می دهد که می‌توان از این فناوری به‌عنوان یک فناوری نوین جایگزین غیرحرارتی برای پاستوریزاسیون پالپ انبه به‌جای عملیات حرارتی استفاده کرد.

کلیدواژه‌ها

Abedelmaksoud, T., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., & Feyissa, A. H. (2018). Effect of ohmic heating parameters on inactivation of enzymes and quality of not-from-concentrate mango juice. Asian Journal of Scientific Research, 11(3), 383-392. doi:https://doi.org/10.3923/ajsr.2018.383.392
Abedelmaksoud, T. G., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., & Feyissa, A. H. (2018). Optimization of ohmic heating parameters for polyphenoloxidase inactivation in not-from-concentrate elstar apple juice using RSM. Journal of Food Science and Technology, 55(7), 2420-2428. doi:https://doi.org/10.1007/s13197-018-3159-1
Ahmed, J., Ramaswamy, H. S., & Hiremath, N. (2005). The effect of high pressure treatment on rheological characteristics and colour of mango pulp. International Journal of Food Science & Technology, 40(8), 885-895. doi:https://doi.org/10.1111/j.1365-2621.2005.01026.x
AOAC. (1990a). Chapter 37 (method 942.15 A). Official Methods of Analysis.
AOAC. (1990b). official method 934.06: moisture in dried fruits. Official Methods of Analysis of AOAC International.
Ayaseh, A., Alizadeh, M., Esmaiili, M., Mehrdad, A., & Javadzadeh, Y. (2014). Effect of thermosonication on peroxides enzyme activity and color parameters of carrot juice. Research and Innovation in Food Science and Technology, 3(3), 267-282. doi:https://doi.org/10.22101/JRIFST.2014.10.23.336
Bárdos, L., & Baránková, H. (2008). Plasma processes at atmospheric and low pressures. Vacuum, 83(3), 522-527. doi:https://doi.org/10.1016/j.vacuum.2008.04.063
Brandenburg, R., Ehlbeck, J., Stieber, M., v. Woedtke, T., Zeymer, J., Schlüter, O., & Weltmann, K.-D. (2007). Antimicrobial Treatment of Heat Sensitive Materials by Means of Atmospheric Pressure Rf-Driven Plasma Jet. Contributions to Plasma Physics, 47(1-2), 72-79. doi:https://doi.org/10.1002/ctpp.200710011
Brasil, I. M., & Siddiqui, M. W. (2018). Chapter 1 - Postharvest Quality of Fruits and Vegetables: An Overview. In M. W. Siddiqui (Ed.), Preharvest Modulation of Postharvest Fruit and Vegetable Quality (pp. 1-40): Academic Press.
Bursać Kovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317-323. doi:https://doi.org/10.1016/j.foodchem.2015.05.099
Chou, T. D., & Kokini, J. L. (1987). Rheological Properties and Conformation of Tomato Paste Pectins, Citrus and Apple Pectins. Journal of Food Science, 52(6), 1658-1664. doi:https://doi.org/10.1111/j.1365-2621.1987.tb05900.x
Dhali, S. K., & Sardja, I. (1989, May). Dielectric-barrier discharge for the removal of SO/sub 2/ from flue gas. Paper presented at the IEEE 1989 International Conference on Plasma Science, Buffalo, NY, USA.
González-Aguilar, G. A., Zavaleta-Gatica, R., & Tiznado-Hernández, M. E. (2007). Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biology and Technology, 45(1), 108-116. doi:https://doi.org/10.1016/j.postharvbio.2007.01.012
Hirschler, R. (2012). Chapter 10- Whiteness, yellowness, and browning in food colorimetry: a critical review (1st Edition ed.): CRC Press.
Kaleem, A., Nazir, H., Pervaiz, S., Iqtedar, M., Abdullah, R., Aftab, M., & Naz, S. (2016). Investigation of the effect of temperatute on vitamin C in fresh and packed fruit juices. FUUAST Journal of Biology, 6(1), 117-120.
Kaushik, N., Kaur, B. P., Rao, P. S., & Mishra, H. N. (2014). Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science & Emerging Technologies, 22, 40-50. doi:https://doi.org/10.1016/j.ifset.2013.12.011
Keener, K. M., Jensen, J., Valdramidis, V., Byrne, E., Connolly, J., Mosnier, J., & Cullen, P. (2012). Decontamination of Bacillus subtilis spores in a sealed package using a non-thermal plasma system. In Z. Machala, K. Hensel, & Y. Akishev (Eds.), Plasma for bio-decontamination, medicine and food security (pp. 445-455): Springer.
Khademi Pour, N., Sharifan, A., & Bakhoda, H. (2021). Study on the Phenolic Compounds and Antioxidant Activity of Gum Extract of Astragalus fasciculifolius Boiss. Research and Innovation in Food Science and Technology, 10(1), 59-70. doi:https://doi.org/10.22101/JRIFST.2021.257952.1201
Li, Y., Kojtari, A., Friedman, G., Brooks, A. D., Fridman, A., & Ji, H.-F. (2014). Decomposition of l-Valine under Nonthermal Dielectric Barrier Discharge Plasma. The Journal of Physical Chemistry B, 118(6), 1612-1620. doi:https://doi.org/10.1021/jp411440k
Liao, X., Li, J., Muhammad, A. I., Suo, Y., Chen, S., Ye, X., . . . Ding, T. (2018). Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd-Acp) for Eshcerichia Coli Inactivation in Apple Juice. Journal of Food Science, 83(2), 401-408. doi:https://doi.org/10.1111/1750-3841.14045
Liu, F., Liao, X., & Wang, Y. (2016). Effects of High-Pressure Processing with or without Blanching on the Antioxidant and Physicochemical Properties of Mango Pulp. Food and Bioprocess Technology, 9(8), 1306-1316. doi:https://doi.org/10.1007/s11947-016-1718-x
Mohsen, S., Murkovic, M., El-Nikeety, M., & Abedelmaksoud, T. (2013). Ohmic heating technology and quality characteristics of mango pulp. Journal of Food Industries and Nutrition Science, 3(1), 69-83.
Pankaj, S. K., Misra, N. N., & Cullen, P. J. (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Science & Emerging Technologies, 19, 153-157. doi:https://doi.org/10.1016/j.ifset.2013.03.001
Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods (Basel, Switzerland), 7(1), 4. doi:https://doi.org/10.3390/foods7010004
Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6(1), 36-60. doi:https://doi.org/10.1007/s11947-012-0867-9
Pignata, C., D'Angelo, D., Fea, E., & Gilli, G. (2017). A review on microbiological decontamination of fresh produce with nonthermal plasma. J Appl Microbiol, 122(6), 1438-1455. doi:https://doi.org/10.1111/jam.13412
Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., & Rocculi, P. (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107, 55-65. doi:https://doi.org/10.1016/j.postharvbio.2015.04.008
Ribeiro, S. M. R., & Schieber, A. (2010). Chapter 34 - Bioactive Compounds in Mango (Mangifera indica L.). In R. R. Watson & V. R. Preedy (Eds.), Bioactive Foods in Promoting Health (pp. 507-523). San Diego: Academic Press.
Sarangapani, C., Thirumdas, R., Devi, Y., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2016). Effect of low-pressure plasma on physico–chemical and functional properties of parboiled rice flour. Lwt - Food Science and Technology, 69, 482-489. doi:https://doi.org/10.1016/j.lwt.2016.02.003
Segat, A., Misra, N. N., Cullen, P. J., & Innocente, N. (2016). Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing, 98, 181-188. doi:https://doi.org/10.1016/j.fbp.2016.01.010
Shahidi Noghabi, M., Niazmand, R., Sarraf, M., & Shahidi Noghabi, M. (2019). Investigating the Effect of Preservatives and Antioxidant on the Oxidative and Microbial Properties of Walnut Butter during the Shelf-life. Research and Innovation in Food Science and Technology, 8(2), 151-164. doi:https://doi.org/10.22101/JRIFST.2019.07.22.824
Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem, 53(20), 7749-7759. doi:https://doi.org/10.1021/jf051513y
Stoffels, E., Sakiyama, Y., & Graves, D. B. (2008). Cold Atmospheric Plasma: Charged Species and Their Interactions With Cells and Tissues. IEEE Transactions on Plasma Science, 36(4), 1441-1457. doi:https://doi.org/10.1109/TPS.2008.2001084
Tappi, S., Berardinelli, A., Ragni, L., Dalla Rosa, M., Guarnieri, A., & Rocculi, P. (2014). Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies, 21, 114-122. doi:https://doi.org/10.1016/j.ifset.2013.09.012
Tharanathan, R. N., Yashoda, H. M., & Prabha, T. N. (2006). Mango (Mangifera indica L.), “The King of Fruits”-An Overview. Food Reviews International, 22(2), 95-123. doi:https://doi.org/10.1080/87559120600574493
Tolouie, H., Mohammadifar, M. A., Ghomi, H., Yaghoubi, A. S., & Hashemi, M. (2018). The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innovative Food Science & Emerging Technologies, 47, 346-352. doi:https://doi.org/10.1016/j.ifset.2018.03.002
Wang, R. X., Nian, W. F., Wu, H. Y., Feng, H. Q., Zhang, K., Zhang, J., . . . Fang, J. (2012). Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. The European Physical Journal D, 66(10), 276. doi:https://doi.org/10.1140/epjd/e2012-30053-1
Wang, Y., Liu, F., Cao, X., Chen, F., Hu, X., & Liao, X. (2012). Comparison of high hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innovative Food Science and Emerging Technologies, 16(Complete), 326-334. doi:https://doi.org/10.1016/j.ifset.2012.07.006
Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food and Bioprocess Technology, 10(10), 1778-1791. doi:https://doi.org/10.1007/s11947-017-1947-7
Zhiqing, G., Li, D., Liu, C., Cheng, A., & Wang, W. (2015). Partial purification and characterization of polyphenol oxidase and peroxidase from chestnut kernel. Lwt - Food Science and Technology, 60(2), 1095-1099. doi:https://doi.org/10.1016/j.lwt.2014.10.012
Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., & Bourke, P. (2013). Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol, 114(3), 778-787. doi:https://doi.org/10.1111/jam.12087
CAPTCHA Image
دوره 10، شماره 4
بهمن 1400
صفحه 341-350
  • تاریخ دریافت: 31 شهریور 1399
  • تاریخ بازنگری: 26 آذر 1399
  • تاریخ پذیرش: 26 دی 1399