اثر لاکتوفرین شیر شتر ریزپوشانی‌شده با کمپلکس‌های ایزولۀ پروتئین آب‌‌‌پنیر-پکتین بر رشد و زنده‌مانی ردۀ سلولی استئوبلاست MG63

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری صنایع غذایی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 استادیار، مؤسسه تحقیقات واکسن و سرم سازی رازی ـ شعبه شمال شرق، مشهد، ایران

4 دانشیار، گروه مهندسی مواد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

5 دانشیار، گروه فرآوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

چکیده

لاکتوفرین یکی از مهم‌ترین ترکیبات زیست‌فعال بشمار می‌رود که قادر به افزایش فعالیت سیستم ایمنی و استخوان‌سازی می‌باشد. اما این ترکیب نسبت به استرس‌های محیطی حساس است. ازاین‌رو، تولید نوشیدنی فراسودمند از لاکتوفرین ریزپوشانی‌شده توسط نانوکمپلکس‌های حاوی پکتین/ایزولۀ پروتئین آب‌پنیر (WPI/HMP) در پژوهش حاضر موردبررسی قرار گرفت. تشکیل نانوکمپلکس در غلظت کلی بیوپلیمر (w/w) 0/4 درصد در pHهای اسیدی (3، 5/3 و 4) با دو روش اسیدی‌سازی قبل از اختلاط (Pr-A) و اسیدی‌سازی بعد از اختلاط (Po-A) انجام گرفت. به‌‌منظور ریزپوشانی لاکتوفرین این ترکیب به کمپلکس WPI/HMP که در روش (Pr-A) با نسبت 2:1 تشکیل‌شده بود، افزوده شد. نتایج ارزیابی پتانسیل زتا و بررسی قطر ذرات نشان داد که با افزایش نسبت پکتین میزان بار منفی بیشتر شده و اندازۀ نانوذرات افزایش یافت. بررسی اثر لاکتوفرین ریزپوشانی‌شده توسط نانوکمپلکس بر ازدیاد سلول استئوبلاست MG63 با استفاده از آزمایش MTT نشان داد که لاکتوفرین ریزپوشانی‌شده با غلظت 50 میکروگرم در میلی‌لیتر رشدی معادل کنترل مثبت داشته و به‌دلیل اینکه نمونۀ لاکتوفرین خالص با غلظت 50 میکروگرم در میلی‌لیتر دارای 16 درصد افزایش رشد نسبت به کنترل مثبت بوده است می‌توان نتیجه گرفت که تقریباً تمامی لاکتوفرین در ترکیب یادشده ریزپوشانی‌شده و یا با اتصال به کمپلکس از دسترس سلول دور مانده است. لاکتوفرین ریزپوشانی‌شده با غلظت 100 میکروگرم در میلی‌لیتر توسط نانوکمپلکس، رشدی معادل 113 درصد دارد و ازنظر آماری در سطح لاکتوفرین خالص با غلظت 50 میکروگرم در میلی‌لیتر قرار می‌‌گیرد.

کلیدواژه‌ها

Aala, M., Aghaei Meybodi HR, Peymani M, & Larijani B. (2009). Osteoporosis and exercise in postmenopausal women. Iranian Journal of Endocrinology & Metabolism, 11(2), 209-217.
Arnett T. (2003). Regulation of bone cell function by acid-base balance. Proceedings of the Nutrition Society, 62(2):511-520. doi: https://doi.org/10.1079/PNS2003268
Bédié, G.K., Turgeon, S.L., & Makhlouf, J. (2008). Formation of native whey protein isolate–low methoxyl pectin complexes as a matrix for hydro-soluble food ingredient entrapment in acidic foods. Food Hydrocolloids, 22(5), 836-844. doi: https://doi.org/10.1016/j.foodhyd.2007.03.010
Bengoechea, C., Jones, O.J., Guerrero, A., & McClements, D.J. (2011). Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, 25(5), 1227-1232. doi: https://doi.org/10.1016/j.foodhyd.2010.11.010
Bharadwaj, S., Naidu, A.G.T., Betageri, G.V., Prasadarao, N.V., & Naidu, A.S. (2009). Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women. Osteoporosis International, 20(9), 1603-1611. doi: https://doi.org/10.1007/s00198-009-0839-8
Cornish, J., Callon, K.E., Naot, D., Palmano, K.P., Banovic, T., Bava, U., Watson, M., Lin, J.-M., Tong, P.C., Chan, Q.C.V.A., Reid, H.L., Fazzalari, N., Baker, H.M., Haggarty, N.W., Grey, A.B., & Reid, I.R. (2004). Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology, 145(9), 4366-4374. doi: https://doi.org/10.1210/en.2003-1307
Cummings, S.R., & Melton, L.J. (2002). Epidemiology and outcomes of osteoporotic fractures. The Lancet, 359(9319), 1761-1767. doi: https://doi.org/10.1016/S0140-6736(02)08657-9
Dickinson, E. (2008). Interfacial structure and stability of food 355 emulsions as affected by protein-polysaccharide interactions. Soft Matter, 4(5), 932-942.
Du, M., Liu, M., Fan, F., Shi, P., & Tu, M. (2017). Structure, function, and nutrition of lactoferrin. (pp. 33-61). In Mineral Containing Proteins, Springer.
Esfanjani, A.F., Jafari, S.M., Assadpoor, E., & Mohammadi, A. (2015). Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. Journal of Food Engineering, 165, 149-155. doi: https://doi.org/10.1016/j.jfoodeng.2015.06.022
Esfanjani, A.F., & Jafari, S.M. (2016). Biopolymer nano-particles and natural nano-carriers for nano encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces, 146(1), 532-543. doi: https://doi.org/10.1016/j.colsurfb.2016.06.053
Esfanjani, A.F., Jafari, S.M., & Assadpour, E. (2017). Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chemistry, 221, 1962-1969. doi: https://doi.org/10.1016/j.foodchem.2016.11.149
Ferreira, S.E., Mello, M.T., Pompeia, S., & Souza-Formigoni, M.L. (2006). Effects of energy drink ingestion on alcohol intoxication. Alcoholism: Clinical and Experimental Research, 30(4), 598-605. doi: https://doi.org/10.1111/j.1530-0277.2006.00070.x
García-Montoya, I.A., Cendón, T.S., Arévalo-Gallegos, S., & Rascón-Cruz, Q. (2012). Lactoferrin a multiple bioactive protein:an overview. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(3), 226-236. doi: https://doi.org/10.1016/j.bbagen.2011.06.018
Garnero, P., & Delmas, P.D. (2002). Evaluation of risk for osteoporosis fractures. In: Bilezikian, J.P., Raisz, L.G., Rodan, G.A. (Eds). Principles of bone biology, (pp.1291-1301, 2nd ed): San Diego, CA: Academic Press.
Grey, A., Banovic, T., Zhu, Q., Watson, M., Callon, K., Palmano, K., Ross, J., Naot, D., Reid, I.R., & Cornish, J. (2004). The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Molecular Endocrinology, 18(9), 2268-2278. doi: https://doi.org/10.1210/me.2003-0456
Grey, A., Zhu, Q., Watson, M., Callon, K., & Cornish, J. (2006). Lactoferrin potently inhibits osteoblast apoptosis, via an LRP1-independent pathway. Molecular and Cellular Endocrinology, 251(1-2), 96-102. doi: https://doi.org/10.1016/j.mce.2006.03.002
Hill, P.A., Tumber, A., & Meikle, M.C. (1997). Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology, 138(9), 3849-3858. doi: https://doi.org/10.1210/endo.138.9.5370
Honary, S., & Zahir, F. (2013). Effect of zeta potential on the properties of nano-drug delivery systems a review (Part 1). Tropical Journal of Pharmaceutical Research, 12(2), 255-264. doi: http://dx.doi.org/10.4314/tjpr.v12i2.19
Hou, J.M., Chen, E.Y., & Wei, S.C. (2014). Lactoferrin inhibits apoptosis through insulin-like growth factor I in primary rat osteoblasts. Acta Pharmacol Sinica, 35(4), 523-530.
Hou, J.M., Chen, E.Y., Lin, F., Lin, Q.M., Xue, Y., Lan, X.H., & Wu, M. (2015). Lactoferrin induces osteoblast growth through IGF-1R. International Journal of Endocrinology, 1, 282-286. doi: http://dx.doi.org/10.1155/2015/282806
Jafari, S.M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816-835. doi: https://doi.org/10.1080/07373930802135972
Jeney, V. (2017). Clinical impact and cellular mechanisms of iron overload-associated bone loss. Front Pharmacol, 8:77. doi: https://doi.org/10.3389/fphar.2017.00077
Jensen, E.V., Buch-Andersen, T., Ravn-Haren, G., & Dragsted, L.O. (2015). Mini-review: the effects of apples on plasma cholesterol levels and cardiovascular risk - a review of the evidence. The Journal of Horticultural Science and Biotechnology, 84(6), 34-41. doi: https://doi.org/10.1080/14620316.2009.11512592
Kanwar, J.R., Roy, K., Patel, Y., Zhou, S.-F., Singh, M.R., Singh, D., Nasir, M., Sehgal, R., Sehgal, A., & Singh, R.S. (2015). Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions. Molecules, 20(6), 9703-9731. doi: https://doi.org/10.3390/molecules20069703
Katouzian, I., & Jafari, S.M. (2016). Nano-encapsulation as a 386 promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology, 53, 34-48. doi: https://doi.org/10.1016/j.tifs.2016.05.002
Kim, S.E., Yun, Y.P., Lee, J.Y., Park, K., & Suh, D.H. (2014). Osteoblast activity of MG-63 cells is enhanced by growth on a lactoferrin-immobilized titanium substrate. Colloids and Surfaces B: Biointerfaces, 123(1), 191-198. doi: https://doi.org/10.1016/j.colsurfb.2014.09.014
Mirhosseini, H., Tan, C.P., Hamid, N.S.A.., & Yusof, S. (2008). Effect of arabic gum, xanthan gum and orange oil content n ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315(1), 47-56. doi: https://doi.org/10.1016/j.colsurfa.2007.07.007
Mohammadi, A., Jafari, S.M., Esfanjani, A.F., & Akhavan, S. (2016). Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry, 190, 513-519. doi: https://doi.org/10.1016/j.foodchem.2015.05.115
Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266-277. doi: https://doi.org/10.1016/j.pbi.2008.03.006
Mosmann, T.R. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. Journal of Immunological Methods; 65(1-2), 55-63. doi: https://doi.org/10.1016/0022-1759(83)90303-4
Naot, D., Palmano, K., & Cornish, J. (2012). Lactoferrin-A potential anabolic intervention in osteoporosis. Yannis Dionyssiotis, 39, 803-820.
Peinado, I., Lesmes, U., Andrés, A., & McClements, J.D. (2010). Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides. Langmuir, 26(12), 9827-9834. doi: https://doi.org/10.1021/la1001013
Plotkin, L.I., Weinstein, R.S., Parfitt, A.M., Roberson, P.K., Manolagas, S.C., & Bellido, T. (1999). Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. Journal of Clinical Investigation, 104, 1363-1374.
Raei, M., Rajabzadeh, G., Zibaei, S., Jafari, S.M., & Sani, A.M. (2015). Nano-encapsulation of isolated lactoferrin from camel milk by calcium alginate and evaluation of its release. International Journal of Biological Macromolecules, 79, 669-673. doi: https://doi.org/10.1016/j.ijbiomac.2015.05.048
Sejersen, M.T., Salomonsen, T., Ipsen, R., Clark, R., Rolin, C., & Engelsen, S.B. (2007). Zeta potential of pectin-stabilised casein aggregates in acidified milk drinks. International Dairy Journal, 17(4), 302-307. doi: https://doi.org/10.1016/j.idairyj.2006.03.003
Singh, O., & Burgess, D. (1989). Characterization of albumin-alginic acid complex coacervation. Journal of Pharmacy and Pharmacology, 41(10), 670-673. doi: https://doi.org/10.1111/j.2042-7158.1989.tb06338.x
Smithers, G.W. (2008). Whey and whey proteins-from ‘gutter-to-gold’. International Dairy Journal, 18(7), 695-704. doi: https://doi.org/10.1016/j.idairyj.2008.03.008
Surh, J., Decker, E.A., & McClements, D.J. (2006). Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions. Food Hydrocolloids, 20(5), 607-618. doi: https://doi.org/10.1016/j.foodhyd.2005.07.004
Takaoka, R., Hikasab, Y., Hayashic, K., & Tabata, Y. (2011). Bone regeneration by lactoferrin released from a gelatin Hydrogel. Journal of Biomaterials Science, Polymer Edition, 22(12), 1581-1589. doi: https://doi.org/10.1163/092050610X517095
Takayama, Y., & Mizumachi, K. (2008). Effect of bovine lactoferrin on extracellular matrix calcification by human osteoblast-like cells. Biosci Biotechnol and Biochem, 72(1), 226-30. doi: https://doi.org/10.1271/bbb.70465
Tate, M.L., Adamson, J.R., Tami, A.E., & Bauer, T.W. (2004).The osteocyte. The International Journal of Biochemistry and Cell Biology, 36(1), 1-8. doi: https://doi.org/10.1016/S1357-2725(03)00241-3
Tomita, M., Wakabayashi, H., Shin, K., Yamauchi, K., Yaeshima, T., & Iwatsuki, K. (2009). Twenty-five years of research on bovine lactoferrin applications. Biochimie, 91(1), 52-57. doi: https://doi.org/10.1016/j.biochi.2008.05.021
Tromp, R.H., de Kruif, C.G., van Eijk, M., & Rolin, C. (2004). On the mechanism of stabilisation of acidified milk drinks by pectin. Food Hydrocolloids, 18(4), 565-572. doi: https://doi.org/10.1016/j.foodhyd.2003.09.005
Wang, Z., & McCauley, L.K. (2011). Osteoclasts and odontoclasts: signaling pathways to development and disease. Oral Diseases, 17(2), 129-42. doi: https://doi.org/10.1111/j.1601-0825.2010.01718.x
Ye, A. (2008). Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications-a review. International Journal of Food Science & Technology, 43(3), 406-415.doi: https://doi.org/10.1111/j.1365-2621.2006.01454.x
CAPTCHA Image
دوره 7، شماره 2
تیر 1397
صفحه 119-132
  • تاریخ دریافت: 10 خرداد 1396
  • تاریخ بازنگری: 27 تیر 1396
  • تاریخ پذیرش: 31 تیر 1396