نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی‌ مشهد، مشهد، ایران

3 استادیار، گروه پژوهشی فرآوری مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی، جهاد دانشگاهی‌‌‌‌ مشهد، مشهد، ایران

چکیده

در این پژوهش، امکان استفاده از فناوری اکستروژن در تولید مکمل فیبری فراسودمند از فراورده‌های جانبی صنایع تبدیلی گوجه‌فرنگی و برنج (تفالۀ گوجه‌فرنگی و سبوس‌ برنج) بررسی شد. از طرح مرکب مرکزی چرخش‌پذیر به‌منظور ارزیابی متغیرهای فرایند و فرمولاسیون شامل سرعت چرخش مارپیچ (160-120 دور بر دقیقه)‌‌‌‌، رطوبت (18-12 درصد) و نسبت تفالۀ گوجه‌فرنگی به سبوس ‌برنج (50:50، 25:75 و 75:25 درصد وزنی:وزنی) استفاده شد و ویژگی‌های عملکردی و فیزیکوشیمیایی شامل شاخص جذب آب، تورم‌‌‌‌، میزان سختی و فیبر رژیمی محلول فراوردۀ بافت‌داده‌شده موردارزیابی قرار گرفت. نتایج نشان داد که با افزایش همزمان متغیرهای سرعت چرخش مارپیچ و نسبت تفالۀ گوجه‌فرنگی به سبوس ‌برنج‌‌‌‌، شاخص جذب آب فراورده افزایش یافت. افزایش همزمان رطوبت و نسبت تفالۀ گوجه‌فرنگی به سبوس‌ برنج میزان تورم را افزایش داد. سختی بافت مکمل فیبری با افزایش سطوح افزودن تفالۀ گوجه‌فرنگی به سبوس ‌برنج افزایش یافت و افزایش سرعت چرخش مارپیچ سبب افزایش میزان فیبر رژیمی محلول گردید. مطابق نتایج به‌دست‌آمده در تحقیق حاضر، شرایط بهینۀ فراوری مکمل فیبری در شرایط تحت بررسی با اهداف افزایش شاخص جذب آب، تورم، میزان فیبر رژیمی محلول و کاهش سختی شامل شاخص جذب آب 4/64 گرم بر گرم، میزان تورم 4/61 میلی‌لیتر بر گرم، میزان سختی 89/08 نیوتن، فیبر رژیمی محلول 11/09 درصد، میزان رطوبت خوراک 14/06 درصد، نسبت تفالۀ گوجه‌‌فرنگی به سبوس‌ برنج 26/43 درصد و سرعت چرخش مارپیچ 120 دور بر دقیقه، تعیین گردید.

کلیدواژه‌ها

همتیان سورکی، ع.، مهدویان‌مهر، هـ.، پورفرزاد، ا. و صداقت، ن. (1392). بهینه‌یابی شرایط استخراج قلیایی فیبرهای رژیمی پوست قهوه و تأثیر آن بر ویژگی‌های کیفی و ماندگاری نان بربری. علوم تغذیه و صنایع غذایی ایران، ۸(۱)، ۱۱-۲۲

AACC. (2000). Approved Methods of the American Association of cereal Chemists. (10th ed). St.Paul, Minnesota: American Association of cereal Chemist.

Altan, A., McCarthy, K.L., & Maskan, M. (2009). Effect of extrusion cooking on functional properties and in vitro starch digestibility of barly-based- extrudates from fruit and vegetable by-products. Journal of Food Science, 74, 86-77.doi: https://doi.org/10.1111/j.1750-3841.2009.01051.x

AOAC. (2000). Association of official analytical chemists. Official methods of analysis, Washington, DC.

Knudsen, K.E.B. (2001). The nutritional significance of dietary fiber analysis. Animal Feed Science and Technology, 90(1-2), 3-20. doi: https://doi.org/10.1016/S0377-8401(01)00193-6

Chandi, G.K., & Sogi, D.S. (2007). Functional properties of rice bran protein concentrates. Journal of Food Engineering, 79(2), 592-597. doi: https://doi.org/10.1016/j.jfoodeng.2006.02.018

Chang, Y.K., Martinez-Bustos, F., & Lara, H. (1998). Effect of some extrusion variable on rheological properties and physicochemical changes of cornmeal extruded by twin screw extruder. Brazilian Journal of chemical Engineering, 15(4), 370-381. doi: http://dx.doi.org/10.1590/S0104-66321998000400006

Charunuch, C., Limsangouan, N., Prasert, W., & Wongkrajang, K. (2014). Optimization of extrusion conditions for ready- to- eat breakfast cereal enhanced with defatted rice bran. International Food Research Journal, 21(2), 713-722.

Daou, C., & Zhang, H. (2011). Physico-chemical properties and Antioxidant Activities of Dietary fiber Derived from Defatted Rice Bran. Advance Journal of Food Science and Technology, 3(5), 339-347.

Davies, J.N., & Hobson, G.E. (1981). The constituents of tomato fruit-the influence of environment, nutrition, and genotype. Critical Reviews in Food Science and Nutrition, 15(3), 205-208. doi: https://doi.org/10.1080/10408398109527317

Dhingra, D., Michael, M., & Rajput, H. (2012). Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255-266. doi: https://doi.org/10.1007/s13197-011-0365-5

Dhungana, P., Chauhan, A., & Sing, S. (2014). Evaluation of extrudate from sweetpotato flour and tomato pomace blend by extrusion processing. African Journal of Food Science, 8(5), 264-277. doi: https:/doi.org/10.5897/AJFS2013.1074

FDA. (2005). 21 CFRPart 101. Food labeling: Health clams; solouble dietary fiber from certain foods and coronary heart. Federal Register, 70:246.

Galdeano, M.C., & Grossmann, M.V.E. (2005). Effect of treatman with alkaline hydrogen peroxide associated with extrusion color and hydration properties of oat hulls. Brazilian Archives of Biology and Technology, 48(1), 63-72. doi: http://dx.doi.org/10.1590/S1516-89132005000100010

Gould, J.M. (1989). Alkaline peroxide treatment of agricultural by products. USP Patent, 4, 806-475.

Grigelmo-Miguel, M., Gorinstein, S., & Martin-Belloso, O. (1999). Characterization of peach dietary fiber concentrate as a food ingredient. Food Chemistry, 65(2), 175-181. doi: https://doi.org/10.1016/S0308-8146(98)00190-3

Hematian Sourki, A., Mahdavian Mehr, H., Pourfarzad, A., & Sedaghat, N. (2013). Optimization of alkaline extraction for dietary fiber of coffee silver skin and its effect on the quality and shelf life of Iranian Barbari bread. Journal of Nutrition Sciences and Food Technology, 1(30), 11-22. (in Persian)

Huang, Y., & Ma, Y. (2016). The effect of extrusion processing on the physicochemical properties of extruded orange pomace. Food Chemistry, 192, 363-369. doi: https://doi.org/10.1016/j.foodchem.2015.07.039

Jing, Y., & Chi, Y. (2013). Effects of twin-screw extrusion in soluble dietary fibre and physicochemical properties of soybean residue. Food Chemistry, 138(2-3), 884-889. doi: https://doi.org/10.1016/j.foodchem.2012.12.003

Kim, C.J., Byun, S.M., Cheigh, H.S., & Kwon, T.W. (1987). Optimization of extrusion rice bran stabilization process. Journal of Food Science, 52(5), 1355-1357. doi: https://doi.org/10.1111/j.1365-2621.1987.tb14081.x

Kosseva, M.R. (2013). Food Industry Wastes. (1st ed). Academic Press, Elsevier, San Diego, USA.

Kumar, N., Sarkar, B.C., & Sharma, H.K. (2010). Development and characterization of extruded product using carrot pomace and rice flour. International Journal of Food Engineering, 6(3), 1-24. doi: https://doi.org/10.2202/1556-3758.1824

Larrea, M.A., Chang, Y.K., & Martinez-Bustos, F. (2005). Some functional properties of extruded orange pulp and its effect on the quality of cookies. LWT-Food Science and Technology, 38(3), 213-220. doi: https://doi.org/10.1016/j.lwt.2004.05.014

Lopez, G., Ros, G., Rincon, F., Periago, M.J., Martinez, M.C., & Ortuno, J. (1996). Relationship between physical and Hydration properties of Soluble and Insoluble fiber of Artichoke. Journal of Agriculture and Food chemistry, 44(9), 2773-2778. doi: https://doi.org/10.1021/jf9507699

Lue, S., Hsieh, F., & Huff, H.E. (1991). Extrusion cooking of corn meal and suger beet fiber:effects on expansion properties, starch gelatinization, and dietary fiber content. Cereal Chemistry, 68(3), 227-234.

Lyly, M., Salmenkallio-Marttila, M., Suortti, T., Autio, k., Poutanen, K., & Lahteenmaki, L. (2004). The sensory characteristics and rheoligical properties of soups containing oat and barley ß- glucan before and after freezing. LWT- Food Science and Technology, 37(7), 749-761. doi: https://doi.org/10.1016/j.lwt.2004.02.009

Patel Manilal, P. (2005). Super critical fluid extraction of rice bran with adsorption on rice hull ash (Doctoral dissertation). Louisiana: Louisiana State University and Agricul and Mechanical College. https://digitalcommons.lsu.edu/cgi/viewcontent.cgi?article=1128&context=gradschool_dissertations  

Mansour, E.M., & Khalil, A.H. (1997). Characteristics of low- fat beef burger as influenced by various types of wheat fibers. Food Research International, 30(3-4), 199-205. doi: https://doi.org/10.1016/S0963-9969(97)00043-4

Martinez-Bustos, F., Viveros-Contreras, R., Galicia-Garcia, T., Nabeshima, E.H., & Verdalet-Guzman, I. (2010). Some functional characteristics of extruded blends of fiber from sugarcane bagass, whey protein concentrate, and corn starch. Food Science and Technology, 31(4), 870-878. doi: http://dx.doi.org/10.1590/S0101-20612011000400007

Mendez-Garcia, S., Martinez-Flores, H.E., & Marales-Sanchez, E. (2011). Effect of extrusion parameters on some properties of dietary fiber from lemon (citrus aurantifolia swingle) residues. African Journal of Biotechnology, 10(73), 16589-16593.

Moraru, C.I., & Kokini, J.L. (2003). Nucleation and expansion during extrusion and microwave heating of cereal foods. Comprehensive Reviews in Food Science and Food Safety, 2(4), 147-165. doi: https://doi.org/10.1111/j.1541-4337.2003.tb00020.x

Moscicki, L., & van Zuilichem, D. J. (2011). Extrusion-cooking and related technique. Extrusion-cooking techniques: applications, theory and sustainability. Wiley, Weinheim, 1-24.

Ning, L, Villota, R., & Artz, W.E. (1991). Modification of corn fiber through chemical treatments in combination with twin- screw extrysion. Creal Chemistery, 68(6), 632-636.

O’Shea, N., Arendt, E., & Gallagher, E. (2013). Enhancing an extruded puffed snack by optimising die head temperature, screw speed and apple pomace inclusion. Food and Bioprocess Technology, 7(6), 1767-1782. doi: https://doi.org/10.1007/s11947-013-1181-x

Potter, R., Stojceska, V., & Plunkett, A. (2013). The use of fruit powders in extruded snacks suitable for children’s diets. LWT-Food Science and Technology, 51(2), 537-544. doi: https://doi.org/10.1016/j.lwt.2012.11.015

Prosky, L., Asp, N.G., Scheweizer, T.F., Devaries, J.W., & Furda, I. (1988). Determination of insoluble, soluble, and total dietary fibre in foods and food products: interlaboratory study. Journal of Official Analytical Chemists, 71, 1017-1023.

Ralet, M.C., Thibault, J.F., & Della Valle, G. (1991). Solubilization of suger- beet pulp cell wall polysaccharids by extrusion- cooking. Lebensmittel-Wissenschaft und-Technology, 24(2), 107-112.

Rashid, S., Rakha, A., Anjum, F. M., Ahmed, W., & Sohail, M. (2015). Effect of extrusion cooking on the dietary fibre content and water solubility Index of wheat bran extrudates. Food Science and Technology, 50(7), 1533-1537. doi: https://doi.org/10.1111/ijfs.12798

Regand, A., & Goff, H.D. (2003). Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloids, 17(1), 95-102. doi: https://doi.org/10.1016/S0268-005X(02)00042-5

Robertson, J.A., de Moredon, F.D., Dysseler, P., Guillon, F., Amado, R., &Thibault, J.F. (2000). Hydration properties of dietary fiber and resistant starch: a european collaborative study. LWT-Food Science and Technology, 33(2), 72-79. doi: https://doi.org/10.1006/fstl.1999.0595

Rouilly, A., Jord, J., & Rigal, L. (2006). Thermo-mechanical processing of sugar beet pulp. I. twin-screw extrusion process. Carbohydrate Polymers, 66(1), 81-87. doi: https://doi.org/10.1016/j.carbpol.2006.02.025

Selani, M. M., Brazaca, S. G. C., dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., & Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chemistry163, 23-30. doi: https://doi.org/10.1016/j.foodchem.2014.04.076 .

Soukoulis, C., Lebesi, D., & Tzia, C. (2009). Enrichment of rice cream with dietary fibre: Effects on rheological properties, ice crystallization and glass transition phenomena. Food Chemistry, 115(2),665-671. doi: https://doi.org/10.1016/j.foodchem.2008.12.070

Stojceska, V., Ainsworth, P., Plunkett, A., & Ibanoglu, S. (2010). The advantage of using extrusion processing for increasing dietary fiber level in gluten- free products. Food Chemistry, 121(1), 156- 164. doi: https://doi.org/10.1016/j.foodchem.2009.12.024

Thebaudin, J.Y., Lefebvre, A.C., Harrington, M., & Bourgeois, C.M. (1997). Dietary fiberes: nutritional and technological interest. Trends Food Science and Technology, 8(2), 41-48. doi: https://doi.org/10.1016/S0924-2244(97)01007-8

Thuwapanichayanan. R, Prachayawarakorn. S., & Soponronnarit, S. (2008). Drying characteristics and quality of banana foam mat. Journal of Food Engineering, 86(4), 573-583. doi: https://doi.org/10.1016/j.jfoodeng.2007.11.008

Wang, W.M., Klopfenstein, C.F, & Ponte, G. (1993). Effects of twin-screw extrusion on the physical properties of dietary fiber and other components of whole wheat and wheat bran and on the baking quality of the wheat bran. Cereal Chemistry, 70(6), 707-711.

Wong, K.H., & Cheung, P.C.K. (2004). Dietary fibers from mushroom sclerotia: preparation and physicochemical and functional properties. Journal of Agriculture and Food Chemistry, 53(24), 9395-9400. doi: https://doi.org/10.1021/jf0510788

Yagci, S., & Gogus, F. (2008). Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food- by- products. Journal of Food Engineering, 86(1), 122-132. doi: https://doi.org/10.1016/j.jfoodeng.2007.09.018

Yangilar, F. (2013). The application of dietary fibre in food industry: structural features, effects on health and definition, obtaining and analysis of dietary fibre: a review. Journal of Food and Nutrition Research, 1(3), 13-23.

Zhang, M., Bai, X., & Zhang, Z. (2011). Extrusion process improve the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54(1), 98-103. doi: https://doi.org/10.1016/j.jcs.2011.04.001

Zhang, M., Liang, Y., Pei, Y., Gao, W., & Zhang, Z. (2009). Effect of process on physicochemical properties of oat bran soluble dietary fiber. Journal of Food Science, 74(8), 28-36. doi: https://doi.org/10.1111/j.1750-3841.2009.01324.x

Zhang, Y., Feng, Y., Sun, L., & Wang, D.W. (2010). Optimization of extrusion technology of rice bran by response surface methodology and measurement of its physical properties [J]. Food Science, 20.