بهینه‌سازی متغیرهای فرمولاسیون و شرایط فرایند اکستروژن محصول اسنک حجیم حاوی آرد کنجالۀ بنه

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار، گروه مهندسی علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 پژوهشکده علوم و فناوری مواد غذایی جهاد دانشگاهی مشهد

4 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

5 استاد، گروه مهندسی علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این تحقیق، از رویۀ سطح پاسخ جهت بهینه‌سازی شرایط اکستروژن استفاده شد. متغیرهای مستقل فرایند شامل آرد کنجالۀ بنه (PDBC) که به‌طور جزئی چربی‌گیری شده است، PDBC (30-10 درصد)، میزان رطوبت (18- 12 درصد)، دمای اکستروژن (180-120 درجۀ سانتی‌گراد) و سرعت چرخش ماردون اکسترودر (220- 120 دور در دقیقه) بود. تأثیر متغیرهای مستقل بر برخی خصوصیات فیزیکی و عملکردی مورد بررسی قرارگرفت، که شامل چگالی توده، نسبت انبساط، سختی بافت، شاخص جذب آب، شاخص حلالیت در آب و شاخص جذب چربی بودند. نتایج نشان داد که افزایش PDBC خصوصیات فیزیکی و عملکردی اسنک حجیم‌شده را بهبود بخشید. چگالی توده با افزایش PDBC به‌طور قابل ملاحظه‌ای افزایش یافت. جایگزینی بخشی از آرد ذرت توسط PDBC سبب افزایش مقدار فیبر گردیده و میانگین اندازۀ سلول‌های هوایی کاهش یافت و حفره‌ها در دیوارۀ سلولی ایجاد شدند. به‌علاوه، با افزایش میزان PDBC سختی بافت نیز افزایش یافت. با افزودن PDBC شاخص جذب آب و شاخص انحلال در آب به‌ترتیب کاهش و افزایش یافتند. شاخص جذب روغن نیز با افزایش PDBC و دمای اکسترودر افزایش یافت. از بین متغیرهای مستقل مورد مطالعه، PDBC معنی‌دارترین تأثیر را بر تمامی پاسخ‌ها در سطح اطمینان 95 درصد داشت. شرایط بهینه برای تولید اسنک حاوی PDBC شامل میزان رطوبت 17/45 درصد، PDBC 21/14 درصد، سرعت چرخش ماردون 160 دور در دقیقه و درجه‌حرارت 133/2 درجۀ سانتی‌‌گراد بود.

کلیدواژه‌ها

Altan, A., & Maskan, M. (2011). Development of extruded foods by utilizing food industry by-products. Advances in Food Extrusion Technology. (pp. 121-160). CRC Press, Boca Raton, FL
Altan, A., McCarthy, K. L., & Maskan, M. (2008b). Twin-screw extrusion of barley–grape pomace blends: extrudate characteristics and determination of optimum processing conditions. Journal of Food Engineering, 89(1), 24-32. doi: https://doi.org/10.1016/j.jfoodeng.2008.03.025
Altan, A., McCarthy, K.L., & Maskan, M. (2008a). Extrusion cooking of barley flour and process parameter optimization by using response surface methodology. Journal of the Science of Food and Agriculture, 88(9), 1648-1659. doi: https://doi.org/10.1002/jsfa.3262
 Anderson, R.A., Conway, H.F., Pfeifer, V.F., &and Griffin, E.L. (1969). Gelatinization of corn grits by roll and extrusion cooking. Cereal Science Today, 14, 4-12.
Arhaliass, A., Bouvier, J. M., & Legrand, J. (2003). Melt growth and shrinkage at the exit of the die in the extrusion-cooking process. Journal of Food Engineering, 60(2), 185-192. https://doi.org/10.1016/S0260-8774(03)00039-6
Association of official analytical chemists (AOAC). (2005). Official Methods of Analysis of the Association of Official Analytical Chemists. 18th ed. Gaithersburg.
Badrie, N., & Mellowes, W.A. 1991. Effect of extrusion variables on cassava extrudates. Journal of Food Science, 56(5), 1334-1337. doi: https://doi.org/10.1111/j.1365-2621.1991.tb04766.x
Bhattacharya, S. (1997). Twin-screw extrusion of rice-green gram blend: extrusion and extrudate characteristics. Journal of Food Engineering, 32(1), 83-99. doi: https://doi.org/10.1016/S0260-8774(97)00004-6
Camire, M.E., & Flint, S.L. (1991). Thermal processing effects on dietary fiber composition and hydration capacity in corn meal, oat meal and potato peels. Cereal Chemistry, 68(6), 645-647.
Camire, M.E., & King, C.C. (1991). Protein and fiber supplementation effects on extruded cornmeal snack quality. Journal of Food Science, 56(3), 760-763. doi: https://doi.org/10.1111/j.1365-2621.1991.tb05376.x
Capriles, V.D., Soares, R.A.M., Pinto e Silva, M.E.M., & Arêas, J.A.G. (2009). Effect of fructans‐based fat replacer on chemical composition, starch digestibility and sensory acceptability of corn snacks. International Journal of Food Science & Technology, 44(10), 1895-1901. doi: https://doi.org/10.1111/j.1365-2621.2009.01915.x
Chang, Y.K., Silva, M.R., Gutkoski, L.C., Sebio, L., & Da Silva, M.A.A.P. (1998). Development of extruded snacks using jatobá (Hymenaea stigonocarpa Mart) flour and cassava starch blends. Journal of the Science of Food and Agriculture, 78(1), 59-66. doi: https://doi.org/10.1002/(SICI)1097-0010(199809)78:13.0.CO;2-%23
Chinnaswamy, R., & Hanna, M.A. (1988). Optimum extrusion-cooking conditions for maximum expansion of corn starch. Journal of Food Science. 53(3), 834-836. https://doi.org/10.1111/j.1365-2621.1988.tb08965.x
Colonna, P., Tayeb, J. & Mercier, F. (1989). Extrusion cooking of starch and starchy products. In Eds. Mercier, C., Linko, P., & Harper, J.M. St. Paul, Extrusion cooking. (pp. 247-319): MN: American Association of Cereal Chemists Inc.
Desai, B.B., Kotecha, P.M., & Salunkhe, D.K. (1999a). Composition and nutritional quality. In: Introduction science and technology of groundnut: biology, production, processing and utilization. (pp.185-199): Nayaprokashpubl, New Delhi, India.
Deshpande, H.W., & Poshadri, A. (2011). Physical and sensory characteristics of extruded snacks prepared from foxtail millet based composite flours. International Food Research Journal, 18(2), 751-756.
Ding, Q.B., Ainsworth, P., Plunkett, A., Tucker, G., & Marson, H. (2006). The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. Journal of Food Engineering, 73(2), 142-148. Doi: https://doi.org/10.1016/j.jfoodeng.2005.01.013
Drago, S., Velasco-Gonzlez, O., Torres, R., Gonzlez, R. & Valencia, M. (2007). Effect of the extrusion on functional properties and mineral dialyzability from phaseolus vulgaris bean flour. Plant Foods for Human Nutrition, 62(2), 43-48. doi: https://doi.org/10.1007/s11130-006-0033-5
Farhoosh, R., & Tavakoli, J. (2008). Chemical composition and oxidative stability of kernel oils from two current subspecies of pistacia atlantica in Iran. Journal of the American Oil Chemists’ Society, 85, 723-729. doi: https://doi.org/10.1007/s11746-008-1258-2
Gomez, M.H., & Aguilera, J.M. (1983). Changes in the starch fraction during extrusion‐cooking of corn. Journal of Food Science, 48(2), 378-381. doi: https://doi.org/10.1111/j.1365-2621.1983.tb10747.x
Gopalakrishna, A.G. (2007). Edible oilseed, oil and meal need for quality control. Beverage Food World, 34(1), 42-44.
Guha, M., Ali, S.Z., & Bhattacharya, S. (1997). Twin-screw extrusion of rice flour without a die: effect of barrel temperature and screw speed on extrusion and extrudate characteristics. Journal of Food Engineering, 32(3), 251-267. doi: https://doi.org/10.1016/S0260-8774(97)00028-9
Gujska, E., & Khan, K. (1990). Effect of temperature on properties of extrudates from high starch fractions of navy, pinto and garbanzo beans. Journal of Food Science, 55(2), 466-469. doi: https://doi.org/10.1111/j.1365-2621.1990.tb06788.x
Gujska, E., & Khan, K. (1991). Functional properties of extrudates from high starch fractions of navy and pinto beans and corn meal blended with legume high protein fractions. Journal of Food Science, 56(2), 431-435. doi: https://doi.org/10.1111/j.1365-2621.1991.tb05297.x
Hagenimana, A., Ding, X., & Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science, 43(1), 38-46. doi: https://doi.org/10.1016/j.jcs.2005.09.003
Hashemi, N., Mortazavi, S.A., Milani, E., & Tabatabai Yazdi, F. (2017). Microstructural and textural properties of puffed snack prepared from partially deffated almond powder and corn flour. Journal of Food Processing and Preservation, 41(5), e13210. doi: https://doi.org/10.1111/jfpp.13210
Hashimoto, J.M., & Grossmann, M.V.E. (2003). Effects of extrusion conditions on quality of cassava bran/cassava starch extrudates. International Journal of Food Science & Technology, 38(5), 511-517. doi: https://doi.org/10.1046/j.1365-2621.2003.00700.x
Hsieh, F., Mulvaney, S. J., Huff, H. E., Lue, S., & Brent Jr, J. (1989). Effect of dietary fiber and screw speed on some extrusion processing and product variables. LWT-Food science and technology, 53(1), 561-570.
Jin, Z., Hsieh, F., & Huff, H.E. (1995). Effects of soy fiber, salt, sugar and screw speed on physical properties and microstructure of corn meal extrudate. Journal of Cereal Science, 22(2), 185-194. doi: https://doi.org/10.1016/0733-5210(95)90049-7
Kadan, R.S., Bryant, R.J., & Pepperman, A.B. (2003). Functional properties of extruded rice flour. Journal of Food Science, 68(5), 1669-1672. doi: https://doi.org/10.1111/j.1365-2621.2003.tb12311.x
Khanal, R.C., Howard, L.R., Brownmiller, C.R., & Prior, R.L. (2009). Influence of extrusion processing on procyanidin composition and total anthocyanin contents of blueberry pomace. Journal of Food Science, 74(2), H52-H58. doi: https://doi.org/10.1111/j.1750-3841.2009.01063.x
Kokini, J.L., Chang, C.N. & Lai, L.S. (1992). The role of rheological properties on extrudate expansion. Eds. J.L., Kokini, C.-T., Ho and M.V. Karwe. In Food extrusion science and technology. (pp. 631-653): New York, Marcel Dekker Inc.
Koksel, H., Ryu, G.H., Ozboy‐Ozbas, O., Basman, A., & Ng, P.K.W. (2003). Development of a bulgur‐like product using extrusion cooking. Journal of the Science of Food and Agriculture, 83(7), 630-636. doi: https://doi.org/10.1002/jsfa.1358
Larrea, M.A., Chang, Y.K., & Martinez-Bustos, F. (2005). Some functional properties of extruded orange pulp and its effect on the quality of cookies. LWT-Food Science and Technology, 38(3), 213-220. doi: https://doi.org/10.1016/j.lwt.2004.05.014
Lazou, A., & Krokida, M. (2010a). Functional properties of corn and corn-lentil extrudates. Food Research International, 43(2), 609-616. doi: https://doi.org/10.1016/j.foodres.2009.09.017
Lazou, A., & Krokida, M. (2010b). Structural and textural characterization of corn-lentil extruded snacks. Journal of Food Engineering, 100(3), 392-408. doi: https://doi.org/10.1016/j.jfoodeng.2010.04.024
Li, S.Q., Zhang, H.Q., Tony Jin, Z., & Hsieh, F.H. (2005). Textural modification of soya bean/corn extrudates as affected by moisture content, screw speed and soya bean concentration. International Journal of Food Science & Technology, 40(7), 731-741. doi: https://doi.org/10.1111/j.1365-2621.2005.00993.x
Lue, S., Hsieh. F., & Huff, H.E. (1991). Extrusion cooking of corn meal and sugar beet fiber: effects on expansion properties, starch gelatinization, and dietary fiber content. Cereal Chemistry, 68(3), 227-234.
Mendonca, S., Grossmann, M.V.E., & Verhé, R. (2000). Corn bran as a fibre source in expanded snacks. LWT-Food Science and Technology, 33(1), 2-8. doi: https://doi.org/10.1006/fstl.1999.0601
Ng, A., Lecain, S., Parker, M.L., Smith, A.C., & Waldron, K.W. (1999). Modification of cell-wall polymers of onion waste: III. effect of extrusion-cooking on cell-wall material of outer fleshy tissues. Carbohydrate Polymers, 39(4), 341-349. doi: https://doi.org/10.1016/S0144-8617(99)00025-9
Obatolu Veronica, A., Omueti Olusola, O., & Adebowale, E.A. (2006). Qualities of extruded puffed snacks from maize/soybean mixture. Journal of Food Process Engineering, 29(2), 149-161. doi: https://doi.org/10.1111/j.1745-4530.2006.00054.x
Omohimi, C.I., Sobukola, O.P., Sarafadeen, K.O., & Sanni, L.O. (2014). Effect of thermo-extrusion process parameters on selected quality attributes of meat analogue from mucuna bean seed flour. Nigerian Food Journal, 32(1), 21-30. doi: https://doi.org/10.1016/S0189-7241(15)30092-8
Onwulata, C.I., Konstance, R.P., Strange, E.D., Smith, P.W., & Holsinger, V.H. (2000). High-fiber snacks extruded from triticale and wheat formulations. Cereal Foods World, 45(10), 470-473.
Rayas- Duarte, P., Majewsk, K., & Doetkott, C. (1998). Effect of extrusion process parameters on the quality of buck wheat fiour mixes. Cereal Chemistry, 75, 338- 345. doi: https://doi.org/10.1094/CCHEM.1998.75.3.338
Riaz, M.N., Asif, M., & Ali, R. (2009). Stability of vitamins during extrusion. Critical Reviews in Food Science and Nutrition, 49(4), 361-368. doi: https://doi.org/10.1080/10408390802067290
Robin, F., Dubois, C., Curti, D., Schuchmann, H.P., & Palzer, S. (2011b). Effect of wheat bran on the mechanical properties of extruded starchy foams. Food Research International, 44(9), 2880-2888. doi: https://doi.org/10.1016/j.foodres.2011.06.041
Saffarzadeh, A., Vincze, L., & Csapo, J. (1999). Determination of the chemical composition of acorn (quercusbrantii), pistacia atlantica and pistacia khinjuk seeds as non-convetional feedstuffs. Acta Agraria Kaposvariensis, 3, 59-69.
Seker, M. (2005). Selected properties of native or modified maize starch/soy protein mixtures extruded at varying screw speed. Journal of the Science of Food and Agriculture, 85(7), 1161-1165. doi: https://doi.org/10.1002/jsfa.2086
Singh, B., Sekhon, K.S., & Singh, N. (2007). Effects of moisture, temperature and level of pea grits on extrusion behaviour and product characteristics of rice. Food Chemistry, 100(1), 198-202. doi: https://doi.org/10.1016/j.foodchem.2005.09.042
Stojceska, V., Ainsworth, P., Plunkett, A., & İbanogˇlu, S. (2008). The recycling of brewer's processing by-product into ready-to-eat snacks using extrusion technology. Journal of Cereal Science, 47(3), 469-479. doi: https://doi.org/10.1016/j.jcs.2007.05.016
Sun, Y., & Muthukumarappan, K. (2002). Changes in functionality of soy-based extrudates during single-screw extrusion processing. International Journal of Food Properties, 5(2), 379-389. doi: https://doi.org/10.1081/JFP-120005793
Tahvonen, R., Hietanen, A., Sankelo, T., Korteniemi, V.M., Laakso, P., & Kallio, H. (1998). Black currant seeds as a nutrient source in breakfast cereals produced by extrusion cooking. Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 206(5), 360-363. Doi: https://doi.org/10.1007/s002170050273
Van Soest, P.J., Robertson, J.B., & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Vernaza, M.G., Chang, Y.K. & Steel, C.J. (2009). Desenvolvimento de cereal matinal funcional orgânico enriquecido com farelo de maracujá: avaliação de propriedades tecnológicas. Brazilian Journal of Food Technology, 12, 145-154.
Warner, K., & Knowlton, S. (1997). Frying quality and oxidative stability of high oleic corn oils. Journal of the American Oil Chemists’ Society, 74(10), 1317-1322. doi: https://doi.org/10.1007/s11746-997-0063-7
Wu, W., Huff, H.E., & Hsieh, F. (2007). Processing and properties of extruded flaxseed‐corn puff. Journal of Food Processing and Preservation, 31(2), 211-226. doi: https://doi.org/10.1111/j.1745-4549.2007.00105.x
Yagci, S., & Gogus, F. (2008). Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. Journal of Food Engineering, 86(1), 122-132. doi: https://doi.org/10.1016/j.jfoodeng.2007.09.018
Yagci, S., & Gogus, F. (2009). Development of extruded snack from food by‐products: a response surface analysis. Journal of Food Process Engineering, 32(4), 565-586. doi: https://doi.org/10.1111/j.1745-4530.2007.00232.x
Yanniotis, S., Petraki, A., & Soumpasi, E. (2007). Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. Journal Food Engineering, 80, 594-599. doi: https://doi.org/10.1016/j.jfoodeng.2006.06.018
Yuliani, S., Torley, P.J., D’Arcy, B., Nicholson, T., & Bhandari, B. (2006). Effect of extrusion parameters on flavour retention, functional and physical properties of mixtures of starch and D-limonene encapsulated in milk protein. International Journal Food Science Technology, 41, 83-94. doi: https://doi.org/10.1111/j.1365-2621.2006.01409.x
Zarzycki, P., Rzedzicki, Z., & Blaszczak, W. (2010). Application of oat whole-meal and protein components as modifiers of extrudates microstructure. International Agrophysics, 24(4), 397-406.
CAPTCHA Image
دوره 7، شماره 1
اردیبهشت 1397
صفحه 29-48
  • تاریخ دریافت: 11 اسفند 1395
  • تاریخ بازنگری: 02 تیر 1396
  • تاریخ پذیرش: 04 تیر 1396