بهینه‌سازی شرایط هیدرولیز آنزیمی پروتئین گردۀ زنبورعسل توسط آنزیم گوارشی پپسین براساس ویژگی‌های ضداکسایشی و بازدارندگی ACE و مقایسۀ آن با ژلۀ رویال

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار، گروه شیمی مواد غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استاد، انستیتو آگروشیمی و تکنولوژی مواد غذایی (IATA)، والنسیا، اسپانیا

چکیده

در این پژوهش تأثیر هیدرولیز آنزیمی پروتئین گردۀ گل توسط آنزیم پپسین بر خواص آنتی‌‌اکسیدانی و بازدارندگی ACE بررسی و با ویژگی آنتی‌اکسیدانی ژلۀ رویال مقایسه گردید. ترکیبات فنلی، فعالیت مهارکنندگی رادیکال DPPH، قدرت احیاکنندگی گردۀ گل و ژلۀ رویال اندازه‌گیری شد که مقادیر آنها برای غلظت 1000 میلی‌گرم بر لیتر گردۀ گل و ژلۀ رویال، به‌ترتیب 174 و 1031/71 میلی‌گرم اسیدگالیک بر گرم نمونه، 67/33 درصد و 95/27 درصد و جذب 0/8 و 0/77 در طول موج 700 نانومتر بود. بیشترین قدرت احیاکنندگی تیمارهای هیدرولیزشده با آنزیم پپسین 2 درصد و مدت هیدرولیز 4 ساعت، 0/81 (براساس میزان جذب) بود. بیشترین قدرت مهار رادیکال DPPH تیمارهای هیدرولیزشده با آنزیم پپسین 2 درصد و مدت هیدرولیز 2/5 ساعت، 100 درصد بود. بیشترین قدرت مهار ACE تیمارهای هیدرولیزشده با پپسین 2 درصد و مدت هیدرولیز 4 ساعت 91/49 درصد بود. نتایج نشان داد با انجام هیدرولیز، قدرت مهار رادیکال DPPH از 67/33 درصد در گردۀ هیدرولیزنشده، به 100 درصد و قدرت مهار ACE گردۀ گل، از 15/54 درصد در گردۀ هیدرولیزنشده، به 91/49 درصد در گردۀ هیدرولیزشده ارتقاء پیدا کرد. بنابراین بعد از انجام عمل هیدرولیز، قدرت مهار رادیکال DPPH و ACE گردۀ گل با ژلۀ رویال قابل مقایسه شد. باتوجه‌به اینکه گردۀ گل تنها منبع اصلی پروتئینی زنبور است؛ با هیدرولیز پروتئین گردۀ گل، می‌توان آنها را به پپتیدهای موجود در ژلۀ رویال نزدیک کرد.

کلیدواژه‌ها

Almeida, J.F., Reis, A.S., Heldt, L.F.S., Pereira, D., Bianchin, M., Moura, C., Plata-Oviedo, M.V., Haminiuk, C W.I., Ribeiro, I.S., Luz, C.F.P., & Carpes, S.T. (2016). Lyophilized bee pollen extract: A natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT - Food Science and Technology, 76(B), 299-305. doi: https://doi.org/10.1016/j.lwt.2016.06.017
Arabshahi, S., Ardestani, A., & Yazdanparast, R. (2001). Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavenois, phenols and indigoids. The role of B-carotene in antioxidants functions. Journal of Science of Food and Agriculture, 81(6), 559-568. doi: https://doi.org/10.1002/jsfa.849
Bogdanov, S. (2014). Royal jelly, bee brood: composition, health, medicine: a review. Bee Product Science, 28(3), 118-153.
Bougatef, A., Hajji, M., Balti, R., Lassouedl, I., Triki-Ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smoth hound muscle protein hydrolysates obtained by gastro intestinal proteases. Food Chemistry, 114(4), 1198-1255. doi: https://doi.org/10.1016/j.foodchem.2008.10.075
Coscueta, R.F., Amorim, M.M., Voss, G.B., Nerli, B.B., Picó, G.A., & Pintado, M.A. (2016). Bioactive properties of peptides obtained from argentinian defatted soy flour protein by corolase pp hydrolysis. Food Chemistry, 198, 36-44. doi: https://doi.org/10.1016/j.foodchem.2015.11.068
Daoud, A., Malika, D., Bakari, S., Hfaiedh, N., Mnafgui, K., Kadri, A., & Gharsallah, N. (2015). Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of date palm Pollen (DPP) from two tunisian cultivars. Arabian Journal of Chemistry, 48, 437-447. doi: https://doi.org/10.1016/j.arabjc.2015.07.014
Deshpande, S., Chryan, M., & Salunkhe, D. (1987). Tanin analysis of food products. Critical Review in Food Nutrition, 24, 41-49. doi: https://doi.org/10.1080/10408398609527441
Guerar, F., Guimas, L., & Binet, A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic, 19-20, 489-498. doi: https://doi.org/10.1016/S1381-1177(02)00203-5
Guo, H., Ekusa, A., Iwai, K., Yonekura, M., Takahara, Y., & Morimatsu, F. (2009). Royal jelly peptides inhibit lipid peroxidation in vitro and in vivo. Journal of Nutural Science and Vitaminology, 54, 191-195. doi: https://doi.org/10.3177/jnsv.54.191
Guo, H., Kozuma, Y., & Yonekura, M. (2005). Isolation and properties of antioxidative peptides from water-soluble royal jelly protein hydrolysate. Food Science and Technology Research, 11(2), 222-230. doi: https://doi.org/10.3136/fstr.11.222
Hmidet, N., Balti, R., Nasri, R., Sila, A., Bougatef, A., & Nasri, M. (2011). Improvement of functional properties and antioxidant activities of cuttlefish (sepia officinalis) muscle proteins hydrolyzed by bacillus mojavensis A21 proteases. Food Research International, 44(9), 2703-2711. doi: https://doi.org/10.1016/j.foodres.2011.05.023
Je, J.Y., Lee, M.H., Lee, K.H., & Ahn, C.B. (2009). Antioxidant and hypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42(9), 1266-1272. doi: https://doi.org/10.1016/j.foodres.2009.06.013
Kawashima, K., Itoh, H., Miyoshi, M., & Chibata, I. (1979). Antioxidant properties of branched-chain amino acid derivatives. Chemical Pharmacological Bulletin, 27(8), 1912-1916. doi: https://doi.org/10.1248/cpb.27.1912
Khantaphant, S., & Benjakul, S. (2008). Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(4), 410-419.  doi: https://doi.org/10.1016/j.cbpb.2008.08.011
Khantaphant, S., Benjakul, S., & Kishimura, H. (2011). Antioxidative and ACE inhibitory activities of protein hydrolysates from the muscle of brownstripe red snapper prepared using pyloric caeca and commercial proteases. Process Biochemistry, 46(1), 318-327. doi: https://doi.org/10.1016/j.procbio.2010.09.005
Kroyer. G., & Hegedus, N. (2001). Evaluation of bioactive properties of pollen extracts as functional dietary food supplement. Innovative Food Science & Emerging Technologies, 2(3), 171-174. Doi: https://doi.org/10.1016/S1466-8564(01)00039-X
Ktari, N., Nasri, R., Mnafgui, K., Hamden, K., Belguith, O., Boudaouara, T., Feki, A.E, & Nasri, M. (2014). Antioxidative and ACE inhibitory activities of protein hydrolysates from zebra blenny (Salaria basilisca) in alloxan-induced diabetic rats. Process Biochemistry, 49(5), 890-897. doi: https://doi.org/10.1016/j.procbio.2014.01.032
Lassoued, I., Mora, L., Nasri, R., Aydi, M., Toldrá, F., Aristoy, M., C., Barkia, A., & Nasri, M. (2015). Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray (Raja clavata) muscle. Journal of Proteomics, 128, 458-468. doi: https://doi.org/10.1016/j.jprot.2015.05.007
LeBlanc, B.W., Davis, O.K., Boue, S., DeLucca, A., & Deeby, A. (2009). Antioxidant activity of Sonoran Desert bee pollen. Food Chemistry, 115(4), 1299-1305. doi: https://doi.org/10.1016/j.foodchem.2009.01.055
Liu, J.R., Yang, Y.C., Shi, L.S., & Peng, C.C. (2008). Antioxidant properties of royal jelly associated with larval age and time of harvest. Journal of Agriculture and Food Chemistry, 56(23), 11447-11452. doi: https://doi.org/10.1021/jf802494e
Marghitas, L.A., Stanciu, O.G., Dezmirean, D.S., Bobis, O., Popescu, O., Bogdanov, S., & Campos, M.S. (2009). In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania. Food Chemistry, 115(3), 878-883. doi: https://doi.org/10.1016/j.foodchem.2009.01.014
Marinova, M.D., & Tchorbanov, B.P. (2010). Preparation of antioxidant enzymatic hydrolysates from honeybee-collected pollen using plant enzymes. Enzyme Research, 41, 5949-50. doi: http://dx.doi.org/10.4061/2010/415949
Matsuoka, T., Kawashima, T., Nakamura, T., Kanamaru, Y., & Yabe, T. (2012). Isolation and characterization of proteases that hydrolyze royal jelly proteins from queen bee larvae of the honeybee, Apis mellifera. Apidologie, 43(6), 685-697. doi: https://doi.org/10.1007/s13592-012-0143-z
Morais, M., Moreira, L., Feás, X., & Estevinho, L.M. (2011). Honeybee-collected pollen from five portuguese natural parks: Palynological origin phenolic content antioxidant properties and antimicrobial activity. Food and Chemical Toxicology, 49(4),1096-1101. doi: https://doi.org/10.1016/j.fct.2011.01.020
Nagai, T., Inoue, R., Suzuki, N., Myoda, T., & Nagashima, T. (2005). Antioxidative ability in a linoleic acid oxidation system and scavenging abilities against active oxygen species of enzymatic hydrolysates from pollen Cistus ladaniferus. International Journal of Molecular Medicine, 15(2), 259-263. doi: https://doi.org/10.3892/ijmm.15.2.259
Nagai, T., & Inoue, R. (2004). Preparation and the functional properties of water extract and alkaline extract from royal jelly. Food Chemistry, 84(2), 181-186. doi: https://doi.org/10.1016/S0308-8146(03)00198-5
Nasri, R., Younes, I., Jridi, M., Trigui, M., Bougatef, A., Arroume, N., Dhulster, P., Nasri. M., & Châabouni, M.K., (2013). ACE inhibitory and antioxidative activities of goby (zosterissessor ophiocephalus) fish protein hydrolysates: effect on meat lipid oxidation. Food Research International, 54(1), 552-561. doi: https://doi.org/10.1016/j.foodres.2013.07.001
Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., & Estevinho L,M.. (2013). Biological activities of commercial bee pollens: antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63(1), 233-239. doi: https://doi.org/10.1016/j.fct.2013.11.010
Paiva, L., Lima, E., Neto, A.I., & Baptista, B. (2016). Isolation and characterization of angiotensin i-converting enzyme (Ace) inhibitory peptides from ulva rigida C. Agardh protein hydrolysate. Journal of Functional Foods, 26, 65-76. doi: https://doi.org/10.1016/j.jff.2016.07.006
Salampessy, J., Reddy, N., Kailasapathy, K., & Phillips, M. (2015). Functional and potential therapeutic ACE-inhibitory peptides derived from bromelain hydrolysis of trevally proteins. Journal of Functional Foods, 14, 716-725. doi: https://doi.org/10.1016/j.jff.2015.02.037
Sun, L., Powers, J.R., & Tang, J. (2007). Evaluation of the antioxidant activity of asparagus, broccoli and their juices. Food Chemistry, 105(1), 101-106. doi: https://doi.org/10.1016/j.foodchem.2007.03.048
Taheri, A., Abedian Kenari, A., Motamedzadegan, A., & Habibi Rezaei, M. (2011). Optimization of goldstripe sardine protein hydrolysate using alcalaseÒ 2.4L by RSM. Journal of Food Science, 9(2), 114-120. doi: https://doi.org/10.1080/19476337.2010.484551
Villanueva, A., Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., Bautista, J., & Millán, F. (1999). Peptide characteristics of sunflower protein hydrolysates. Journal of the American Oil Chemists Society, 76(12), 1455-1460. doi: https://doi.org/10.1007/s11746-999-0184-2
Wiriyaphan, C., Chitsomboon, B., & Yongsawadigul, J. (2012). Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chemistry, 132(1):104-111. doi: https://doi.org/10.1016/j.foodchem.2011.10.040
Zhang, M., Mu, T.-H., & Sun, M.-J. (2014). Purification and identification of antioxidant peptides from sweet potato protein hydrolysates by alcalase. Journal of Functional Foods, 7, 191-200. doi: https://doi.org/10.1016/j.jff.2014.02.012
CAPTCHA Image
دوره 7، شماره 1
اردیبهشت 1397
صفحه 49-64
  • تاریخ دریافت: 01 آذر 1395
  • تاریخ بازنگری: 24 خرداد 1396
  • تاریخ پذیرش: 14 تیر 1396