Optimization of Gelatin Extraction Process, from Sheep Skin Waste Uing Alcalase Enzyme by Response Surface Method

Document Type : Original Paper

Authors

1 Ph.D. Student, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran

2 Professor, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran

3 Assistant Professor, Department of Food Industries, Agricultural Research and Education Center, Khorasan Razavi, Agricultural Research and Training Organization, Mashhad, Iran

4 Assistant Professor of Razi Vaccine and Serum Research Center, Mashhad, Iran

Abstract

This study determined the optimal conditions for enzyme-assisted gelatin extraction from sheep skin waste using the effects of three variables: enzyme concentration (0.5-2.5%), hydrolysis time (60-240 min), and extraction temperature (60-80 °C). The impact of these three variables was studied on extraction, yield, gel strength, viscosity, degree of hydrolysis, melting point and SDS-PAGE, and the results were analyzed by using the central composite design (CCD) and response surface methodology (RSM). Also the analysis of variance table showed that the lack of fit was not significant for all response surface models at 95%. The results showed that enzyme concentration 0.5%, hydrolysis time of 166 min, and extraction temperature 60 °C are the desirable condition for optimal extraction (11.03%) and optimal degree of hydrolysis (23.00%). In addition, the effects of these three variables on gel strength, viscosity and melting point were significant, and in optimal conditions, gel strength was measured as 175.33 g, viscosity as 3.26 Mpa/sec, and melting point as 25.39 °C.

Ahmed, J., Ptaszek, P., & Basu, S. (2016). Advances in food rheology and its applications: Woodhead Publishing.
AOAC. (2000). Official Methods of Analysis. 17th ed Association of official analytical chemists. Gaithersburg, Maryland, USA.
British Standards Institution. (1975). Methods for Sampling and Testing Gelatin (Physical and Chemical Methods) (Vol. 757): BSI.
Du, L., Khiari, Z., Pietrasik, Z., & Betti, M. (2013). Physicochemical and functional properties of gelatins extracted from turkey and chicken heads. Poultry science, 92(9), 2463-2474. doi:https://doi.org/10.3382/ps.2013-03161
Gbogouri, G., Linder, M., Fanni, J., & Parmentier, M. (2004). Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. Journal of food science, 69(8), C615-C622. doi:https://doi.org/10.1111/j.1365-2621.2004.tb09909.x
Giménez, B., Alemán, A., Montero, P., & Gómez-Guillén, M. (2009). Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chemistry, 114(3), 976-983. doi:https://doi.org/10.1016/j.foodchem.2008.10.050
Hosseiniparvar, S. H., Keramat, J., Kadivar, M., Khanipour, E., & Milani, E. (2006). Optimization of Enzymic Extraction of Edible Gelatin from Cattle Bones Using Response Surface Methodology (RSM). Iranian Food Science and Technology Research Journal, 2(1), 1-14. (in Persian)
Iranian National Standardization Organization. (1994). Specification for gelatin, "Food grad".  (ISIRI Standard No. 3474, 1st Edition). Retrieved from http://standard.isiri.gov.ir/StandardFiles/3474.htm (in Persian)
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature, 227(5259), 680-685. doi:https://doi.org/10.1038/227680a010.1038/227680a0
Lassoued, I., Jridi, M., Nasri, R., Dammak, A., Hajji, M., Nasri, M., & Barkia, A. (2014). Characteristics and functional properties of gelatin from thornback ray skin obtained by pepsin-aided process in comparison with commercial halal bovine gelatin. Food Hydrocolloids, 41, 309-318. doi:https://doi.org/10.1016/j.foodhyd.2014.04.029
Mad-Ali, S., Benjakul, S., Prodpran, T., & Maqsood, S. (2016a). Characteristics and Gel Properties of Gelatin from Goat Skin as Influenced by Alkaline-pretreatment Conditions. Asian-Australasian journal of animal sciences, 29(6), 845-854. doi:https://doi.org/10.5713/ajas.15.0784
Mad-Ali, S., Benjakul, S., Prodpran, T., & Maqsood, S. (2016b). Interfacial properties of gelatin from goat skin as influenced by drying methods. LWT-Food Science and Technology, 73, 102-107. doi:https://doi.org/10.1016/j.lwt.2016.05.048
Mad-Ali, S., Benjakul, S., Prodpran, T., & Maqsood, S. (2016c). Characteristics and gel properties of gelatin from goat skin as affected by pretreatments using sodium sulfate and hydrogen peroxide. Journal of the Science of Food and Agriculture, 96(6), 2193-2203. doi:https://doi.org/10.1002/jsfa.7336
Mad‐Ali, S., Benjakul, S., Prodpran, T., & Maqsood, S. (2017). Characteristics and Gel Properties of Gelatin from Goat Skin as Affected by Extraction Conditions. Journal of Food Processing and Preservation, 41(3), e12949. doi:https://doi.org/10.1111/jfpp.12949
Mohammad, A. W., Kumar, A. G., & Basha, R. K. (2015). Optimization of enzymatic hydrolysis of tilapia (Oreochromis Spp.) scale gelatine. International Aquatic Research, 7(1), 27-39. doi:https://doi.org/10.1007/s40071-014-0090-6
Mulyani, S., Setyabudi, F., Pranoto, Y., & Santoso, U. (2017). The effect of pretreatment using hydrochloric acid on the characteristics of buffalo hide gelatin. Journal of Indonesian Tropical Animal Agriculture, 42(1), 14-22. doi:https://doi.org/10.14710/jitaa.42.1.14-22
Nalinanon, S., Benjakul, S., Visessanguan, W., & Kishimura, H. (2008). Improvement of gelatin extraction from bigeye snapper skin using pepsin-aided process in combination with protease inhibitor. Food Hydrocolloids, 22(4), 615-622. doi:https://doi.org/10.1016/j.foodhyd.2007.01.012
Rafieian, F., Keramat, J., & Shahedi, M. (2015). Physicochemical properties of gelatin extracted from chicken deboner residue. LWT-Food Science and Technology, 64(2), 1370-1375. doi:https://doi.org/10.1016/j.lwt.2015.04.050
Salwanee, S., Mustapha, W. A. W., Mamot, S., Maskat, M. Y., & Ibrahim, S. (2013). Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using alcalase. Sains Malaysiana, 42(3), 279-287.
Sanaei, A., Mahmoodani, F., See, S., Yusop, S. M., & Babji, A. S. (2013). Optimization of gelatin extraction and physico-chemical properties of catfish (Clarias gariepinus) bone gelatin. International Food Research Journal, 20(1), 423.
See, S., Hoo, L., & Babji, A. S. (2011). Optimization of enzymatic hydrolysis of Salmon (Salmo salar) skin by Alcalase. International Food Research Journal, 18(4).
ShahiriTabarestani, H., Maghsoudlou, Y., Motamedzadegan, A., & Sadeghi Mahoonak, A. (2010). Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchusmykiss). Bioresource Technology, 101(15), 6207-6214. doi:https://doi.org/10.1016/j.biortech.2010.02.071
Souissi, N., Bougatef, A., Triki-Ellouz, Y., & Nasri, M. (2007). Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food technology and biotechnology, 45(2), 187-194.
Talapphet, N., Prommajak, T., & Raviyan, P. (2017). Process Optimization and Properties of Crude Gelatin Extracted from Tannery Bovine Hide. Food and Appling Bioscience Journal, 5(3), 132-148. doi:https://doi.org/10.14456/fabj.2017.11
Tehran Chamber of Commerce, Industries, Mines and Agriculture. (2017). Retrieved from http://tccim.ir/news/FullStory.aspx?nid=49230 (in Persian)
Xu, M., Wei, L., Xiao, Y., Bi, H., Yang, H., & Du, Y. (2017). Physicochemical and functional properties of gelatin extracted from Yak skin. International Journal of Biological Mcromolecules, 95, 1246-1253. doi:https://doi.org/10.1016/j.ijbiomac.2016.11.020
CAPTCHA Image
Volume 8, Issue 2
July 2019
Pages 125-136
  • Receive Date: 29 January 2018
  • Revise Date: 15 July 2018
  • Accept Date: 21 July 2018