نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشیار، گروه مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشجوی کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

آسیب‌های گلابی یکی از علت‌های اصلی ازدست‌دادن کیفیت میوه است. کبودی در هنگام بارگذاری دینامیکی و شبه استاتیک رخ می‌دهد که باعث تخریب بافت سالم میوه می‌گردد. در این پژوهش ابتدا گلابی‌ها تحت بارگذاری شبه استاتیکی (لبۀ پهن و لبۀ نازک) و بارگذاری دینامیکی قرار گرفتند. سپس در دوره‌های 5، 10 و 15 روزه انبارداری شده و بعد از هر دوره انبارداری با استفاده از تکنیک غیرمخرب سی‌تی‌اسکن (CT-Scan) برای تخمین درصد پوسیدگی مورد بررسی قرار گرفتند. شبکۀ عصبی مصنوعی پرسپترون چندلایه (MLP) با دولایۀ پنهان و تعداد 3، 5، 7 و 9 نرون در هر لایه برای مدل‌سازی نیروی بارگذاری و دورۀ انبار‌داری میوۀ گلابی جهت پیشگویی میزان پوسیدگی انتخاب گردید. بیشترین مقادیر R2 آموزش و آزمون برای بارگذاری شبه استاتیکی لبۀ نازک و لبۀ پهن در شبکه‌ای با 9 نرون به‌ترتیب 0/91=لبۀ نازک آموزش، 0/99=لبۀ نازک آزمون و 0/95= لبۀ پهن آموزش و 0/99= لبۀ پهن آزمون بوده است و برای بارگذاری دینامیکی شبکه‌ای با 3 نرون در لایۀ مخفی 0/98=آموزش، 0/99=آزمون بیشترین مقدار را به خود اختصاص داده است. همچنین بهترین شبکه برای یادگیری (9 نرون) بارگذاری شبه استاتیکی لبۀ نازک، (7 نرون) بارگذاری شبه استاتیکی لبۀ پهن و بارگذاری دینامیکی (7 نرون) بود. باتوجه‌به نتایج به‌دست‌آمده برای R2، RMSE و سیکل یادگیری می‌توان گفت شبکۀ عصبی توانایی پیش‌بینی میزان درصد پوسیدگی را در حد قابل‌قبولی برای گلابی داشته است.

کلیدواژه‌ها

Azadbakht, M., Aghili, H., Ziaratban, A., & Torshizi, M. V. (2017). Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes. Energy, 120, 947-958. doi:https://doi.org/10.1016/j.energy.2016.12.006

Azadbakht, M., Torshizi, M. V., Ziaratban, A., & Ghajarjazi, E. (2016). Application of Artificial Neural Network (ANN) in predicting mechanical properties of canola stem under shear loading. Agricultural Engineering International: CIGR Journal, 18(2), 413-425.

Balogun, W. A., Salami, M.-J. E., Aibinu, A. M., Mustafah, Y. M., & Isiaka.B.S, S. (2014). Mini Review: Artificial Neural Network Application on Fruit and Vegetables Quality Assessment. International Journal of Scientific & Engineering Research, 5(6), 702-708.

Chakespari, A., Rajabipour, A., & Mobli, H. (2010). Mass modeling of two apple varieties by geometrical attributes. Australian Journal of Agricultural Engineering, 1(3), 112.

Diels, E., van Dael, M., Keresztes, J., Vanmaercke, S., Verboven, P., Nicolai, B., . . . Smeets, B. (2017). Assessment of bruise volumes in apples using X-ray computed tomography. Postharvest Biology and Technology, 128, 24-32. doi:https://doi.org/10.1016/j.postharvbio.2017.01.013

Fathi, M., Mohebbi, M., & Razavi, S. M. A. (2011). Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit. Food and Bioprocess Technology, 4(8), 1357-1366. doi:https://doi.org/10.1007/s11947-009-0222-y

Ganiron, T. U. (2014). Size properties of mangoes using image analysis. International Journal of Bio-Science and Bio-Technology, 6(2), 31-42.

Hernández-Sánchez, N., Moreda, G. P., Herre-ro-Langreo, A., & Melado-Herreros, Á. (2016). Assessment of internal and external quality of fruits and vegetables. In N. Sozer (Ed.), Imaging Technologies and Data Processing for Food Engineers. Food Engineering Series (pp. 269-309): Springer, Cham.

Khoshnevisan, B., Rafiee, S., Omid, M., & Yousefi, M. (2013). Prediction of environmental indices of Iran wheat production using artificial neural networks. International Journal of Energy & Environment, 4(2).

Kolniak-Ostek, J. (2016). Identification and quantification of polyphenolic compounds in ten pear cultivars by UPLC-PDA-Q/TOF-MS. Journal of Food Composition and Analysis, 49, 65-77. doi:https://doi.org/10.1016/j.jfca.2016.04.004

Kotwaliwale, N., Singh, K., Kalne, A., Jha, S. N., Seth, N., & Kar, A. (2014). X-ray imaging methods for internal quality evaluation of agricultural produce. Journal of Food Science and Technology, 51(1), 1-15. doi:https://doi.org/10.1007/s13197-011-0485-y

Liu, Y., & Ying, Y. (2007). Noninvasive method for internal quality evaluation of pear fruit using fiber-optic FT-NIR spectrometry. International Journal of Food Properties, 10(4), 877-886. doi:https://doi.org/10.1080/10942910601172042

Massah, J., Hajiheydari, F., & Haddad, D. (2017). Application of Electrical Resistance in Nondestructive Postharvest Quality Evaluation of Apple Fruit. Journal of Agricultural Science and Technology, 19, 1031-1039.

Pan, L., Zhang, Q., Zhang, W., Sun, Y., Hu, P., & Tu, K. (2016). Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network. Food Chemistry, 192, 134-141. doi:https://doi.org/10.1016/j.foodchem.2015.06.106

Pérez-Jiménez, J., & Saura-Calixto, F. (2015). Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries. Food Research International, 74, 315-323. doi:https://doi.org/10.1016/j.foodres.2015.05.007

Rostampour, V., Motlagh, A. M., Komarizadeh, M. H., Sadeghi, M., Bernousi, I., & Ghanbari, T. (2013). Using Artificial Neural Network (ANN) technique for prediction of apple bruise damage. Australian Journal of Crop Science, 7(10), 1442.

Wang, Z., Hu, M., & Zhai, G. (2018). Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data. Sensors, 18(4), 1126. doi:https://doi.org/10.3390/s18041126

Zarifneshat, S., Rohani, A., Ghassemzadeh, H. R., Sadeghi, M., Ahmadi, E., & Zarifneshat, M. (2012). Predictions of apple bruise volume using artificial neural network. Computers and Electronics in Agriculture, 82, 75-86. doi:https://doi.org/10.1016/j.compag.2011.12.015