Application of Image Wavelet Transform for Qualitative Classification of Green Tea Using Metaheuristic Algorithms

Document Type : Original Paper

Authors

Assistant Professor, Department of Mechanization Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

Abstract

This study was aimed to investigate the best features extracted from images to determine the best technique for qualitative classification of green tea by using meta-heuristic algorithms. Five different classes of green tea were evaluated according to the standards of the Institute of Standards and Industrial Research of Iran. After receiving the images of different green tea classes in the computer, 6 square blocks were extracted from each of the original color images. These image blocks were transformed from RGB to gray scale images. One-level discrete Haar wavelet filter was applied to the gray images and 4 wavelet subimages were obtained. Co-occurrence matrices were calculated for each wavelet subimages and 17 common texture features in the image textural studies, were extracted from subimages (totally 68 texture features for each block image). By using principal component analysis, 8 feature components were produced from the original features and used for the separation of 5 groups of green tea. The results showed that algorithms of artificial neural networks, support vector machine and decision tree were capable of qualitative classification of green tea with high accuracy. However, Bayesian network did not have acceptable performance. According to the evaluation statistics, the multilayer perceptron artificial neural networks (with Kappa statistic, root mean square error and classification accuracy of 0.90, 0.42, and 99.17%, respectively) was the best classifier. Based on the results of this study, the use of machine vision and texture features extracted from image wavelet subimages is a suitable technique for the qualitative classification of green tea.

Keywords

Al Ohali, Y. (2011). Computer vision based date fruit grading system: Design and implementation. Journal of King Saud University-Computer and Information Sciences, 23(1), 29-36. doi:https://doi.org/10.1016/j.jksuci.2010.03.003
Alrajeh, K. M., & Alzohairy, T. A. (2012). Date fruits classification using MLP and RBF neural networks. International Journal of Computer Applications, 41(10), 36-41. doi:https://doi.org/10.5120/5579-7686
Bakhshipour, A., Sanaeifar, A., Payman, S. H., & de la Guardia, M. (2018). Evaluation of Data Mining Strategies for Classification of Black Tea Based on Image-Based Features. Food analytical methods, 11(4), 1041-1050. doi:https://doi.org/10.1007/s12161-017-1075-z
Benalia, S., Cubero, S., Prats-Montalbán, J. M., Bernardi, B., Zimbalatti, G., & Blasco, J. (2016). Computer vision for automatic quality inspection of dried figs (Ficus carica L.) in real-time. Computers and electronics in agriculture, 120, 17-25. doi:https://doi.org/10.1016/j.compag.2015.11.002
Bordoni, M., Bittelli, M., Valentino, R., Chersich, S., Persichillo, M., & Meisina, C. (2018). Soil Water Content Estimated by Support Vector Machine for the Assessment of Shallow Landslides Triggering: the Role of Antecedent Meteorological Conditions. Environmental Modeling & Assessment, 23(4), 333-352. doi:https://doi.org/10.1007/s10666-017-9586-y
Bouckaert, R. R. (2004). Bayesian network classifiers in weka.
Chandra, S., & Maheshkar, S. (2017). Verification of static signature pattern based on random subspace, REP tree and bagging. Multimedia Tools and Applications, 76(18), 19139-19171. doi:https://doi.org/10.1007/s11042-017-4531-2
Chen, Q., Zhao, J., Chen, Z., Lin, H., & Zhao, D.-A. (2011). Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools. Sensors and Actuators B: Chemical, 159(1), 294-300. doi:https://doi.org/10.1016/j.snb.2011.07.009
Diniz, P. H. G. D., Barbosa, M. F., de Melo Milanez, K. D. T., Pistonesi, M. F., & de Araújo, M. C. U. (2016). Using UV–Vis spectroscopy for simultaneous geographical and varietal classification of tea infusions simulating a home-made tea cup. Food chemistry, 192, 374-379. doi:https://doi.org/10.1016/j.foodchem.2015.07.022
Diniz, P. H. G. D., Pistonesi, M. F., Alvarez, M. B., Band, B. S. F., & de Araújo, M. C. U. (2015). Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA). Journal of Food Composition and Analysis, 39, 103-110. doi:https://doi.org/10.1016/j.jfca.2014.11.012
Dissing, B. S., Papadopoulou, O. S., Tassou, C., Ersbøll, B. K., Carstensen, J. M., Panagou, E. Z., & Nychas, G.-J. (2013). Using multispectral imaging for spoilage detection of pork meat. Food and Bioprocess Technology, 6(9), 2268-2279. doi:https://doi.org/10.1007/s11947-012-0886-6
Ezadi, H. (2013). Development of technology and evaluation of defect detection and tomato grading system using visual machine technology and neuro-fuzzy networks (ANFIS). (Unpublished master's degree in Agricultural Machinery Mechanics), Shiraz University, (in Persian)
Farooqi, S. (2012). Data mining: An overview. Indian Agricultural Statistics Research Institute (IASRI), Library Avenue, Pusa, New Delhi-110012.
Garg, A., Pavlovic, V., & Huang, T. S. (2002). Bayesian networks as ensemble of classifiers. Paper presented at the Object recognition supported by user interaction for service robots, 11-15 Aug. 2002.
Ge, H., Jiang, Y., Xu, Z., Lian, F., Zhang, Y., & Xia, S. (2014). Identification of wheat quality using THz spectrum. Optics express, 22(10), 12533-12544. doi:https://doi.org/10.1364/OE.22.012533
Gonzalez, R. C., & Woods, R. E. (2002). Digital Image Processing, Publishing House of Electronics Industry. Beijing, 295-300.
Granitto, P. M., Biasioli, F., Aprea, E., Mott, D., Furlanello, C., Märk, T. D., & Gasperi, F. (2007). Rapid and non-destructive identification of strawberry cultivars by direct PTR-MS headspace analysis and data mining techniques. Sensors and Actuators B: Chemical, 121(2), 379-385. doi:https://doi.org/10.1016/j.snb.2006.03.047
Haralick, R. M., & Shanmugam, K. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610-621. doi:https://doi.org/10.1109/TSMC.1973.4309314
Hayat, K., Iqbal, H., Malik, U., Bilal, U., & Mushtaq, S. (2015). Tea and its consumption: benefits and risks. Critical reviews in food science and nutrition, 55(7), 939-954. doi:https://doi.org/10.1080/10408398.2012.678949
He, X., Li, J., Zhao, W., Liu, R., Zhang, L., & Kong, X. (2015). Chemical fingerprint analysis for quality control and identification of Ziyang green tea by HPLC. Food chemistry, 171, 405-411. doi:https://doi.org/10.1016/j.foodchem.2014.09.026
Jolliffe, I. (2011). Principal component analysis. International encyclopedia of statistical science: Springer, Berlin, Heidelberg.
Landwehr, N., Hall, M., & Frank, E. (2005). Logistic model trees. Machine learning, 59(1-2), 161-205. doi:https://doi.org/10.1007/s10994-005-0466-3
Liang, Y., Lu, J., Zhang, L., Wu, S., & Wu, Y. (2005). Estimation of tea quality by infusion colour difference analysis. Journal of the Science of Food and Agriculture, 85(2), 286-292. doi:https://doi.org/10.1002/jsfa.1953
Liming, X., & Yanchao, Z. (2010). Automated strawberry grading system based on image processing. Computers and electronics in agriculture, 71(1), S32-S39. doi:https://doi.org/10.1016/j.compag.2009.09.013
Maheshwari, C. V., Jain, N. K., & Khanna, S. (2015). Computer Vision Based Classification of Indian Gujarat-17 Rice Using Geometrical Features and Cart. In L. Jain, H. Behera, J. Mandal, & D. Mohapatra (Eds.), Computational Intelligence in Data Mining-Volume 3. Smart Innovation, Systems and Technologies, (Vol. 33, pp. 205-216): Springer, New Delhi.
Majumdar, S., & Jayas, D. (1999). Classification of bulk samples of cereal grains using machine vision. Journal of Agricultural Engineering Research, 73(1), 35-47. doi:https://doi.org/10.1006/jaer.1998.0388
Mery, D., Pedreschi, F., & Soto, A. (2013). Automated design of a computer vision system for visual food quality evaluation. Food and Bioprocess Technology, 6(8), 2093-2108. doi:https://doi.org/10.1007/s11947-012-0934-2
Ministry of Agriculture-Jahad: Planning & Economic Affairs. (2017). State of the Tea Industry Country Report. pp. 20. Retrieved from http://facility.maj.ir/Dorsapax/Data/Sub_46/File/3.pdf (in Persian)
Mollazade, K., Omid, M., & Arefi, A. (2012). Comparing data mining classifiers for grading raisins based on visual features. Computers and electronics in agriculture, 84, 124-131. doi:https://doi.org/10.1016/j.compag.2012.03.004
Nouri-Ahmadabadi, H., Omid, M., Mohtasebi, S. S., & Firouz, M. S. (2017). Design, development and evaluation of an online grading system for peeled pistachios equipped with machine vision technology and support vector machine. Information Processing in Agriculture, 4(4), 333-341.
Ouali, A., Cherif, A. R., & Krebs, M.-O. (2006). Data mining based Bayesian networks for best classification. Computational statistics & data analysis, 51(2), 1278-1292.
Park, B., & Chen, Y. (2001). Co-occurrence matrix texture features of multi-spectral images on poultry carcasses. Journal of Agricultural Engineering Research, 78(2), 127-140.
Payman, S., Bakhshipour, A., & Zareiforoush, H. (2018). Development of an expert vision-based system for inspecting rice quality indices. Quality Assurance and Safety of Crops & Foods, 10(1), 103-114.
Rajesh, P., & Karthikeyan, M. (2017). A comparative study of data mining algorithms for decision tree approaches using WEKA tool. Advances in Natural and Applied Sciences, 11(9), 230-243.
Roy, R. B., Chattopadhyay, P., Tudu, B., Bhattacharyya, N., & Bandyopadhyay, R. (2014). Artificial flavor perception of black tea using fusion of electronic nose and tongue response: A Bayesian statistical approach. Journal of Food Engineering, 142, 87-93. doi:https://doi.org/10.1016/j.jfoodeng.2014.06.004
Sabanci, K., Toktas, A., & Kayabasi, A. (2017). Grain classifier with computer vision using adaptive neuro‐fuzzy inference system. Journal of the Science of Food and Agriculture, 97(12), 3994-4000. doi:https://doi.org/10.1002/jsfa.8264
Sanaeifar, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., & Siadat, M. (2014, 3-5 Nov. 2014). Application of an electronic nose system coupled with artificial neural network for classification of banana samples during shelf-life process. Paper presented at the 2014 International Conference on Control, Decision and Information Technologies (CoDIT).
Schölkopf, B., Smola, A. J., & Bach, F. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond: MIT press.
Semary, N. A., Tharwat, A., Elhariri, E., & Hassanien, A. E. (2015). Fruit-based tomato grading system using features fusion and support vector machine. In F. D. e. al. (Ed.), Intelligent Systems' 2014. Advances in Intelligent Systems and Computing (Vol. 323, pp. 401-410): Springer.
Silva, L., Koga, M., Cugnasca, C., & Costa, A. (2013). Comparative assessment of feature selection and classification techniques for visual inspection of pot plant seedlings. Computers and electronics in agriculture, 97, 47-55. doi:https://doi.org/10.1016/j.compag.2013.07.001
Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., & Džeroski, S. (2010). Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecological Informatics, 5(4), 256-266. doi:https://doi.org/10.1016/j.ecoinf.2010.03.004
Velásquez, L., Cruz-Tirado, J., Siche, R., & Quevedo, R. (2017). An application based on the decision tree to classify the marbling of beef by hyperspectral imaging. Meat science, 133, 43-50. doi:https://doi.org/10.1016/j.meatsci.2017.06.002
Vlontzos, G., & Pardalos, P. M. (2017). Data mining and optimisation issues in the food industry. International Journal of Sustainable Agricultural Management and Informatics, 3(1), 44-64. doi:https://doi.org/10.1504/IJSAMI.2017.082921
Wang, C.-F., & Liu, K. (2015). Learning Bayesian network classifier based on artificial fish swarm algorithm. IAENG International Journal of Computer Science, 42(4), 355-360.
Wang, L. (2005). Support vector machines: theory and applications (Vol. 177): Springer Science & Business Media.
Yao, Q., Guan, Z., Zhou, Y., Tang, J., Hu, Y., & Yang, B. (2009, 2-3 May 2009). Application of support vector machine for detecting rice diseases using shape and color texture features. Paper presented at the 2009 international conference on engineering computation.
Yu, H., Wang, J., Yao, C., Zhang, H., & Yu, Y. (2008). Quality grade identification of green tea using E-nose by CA and ANN. LWT-Food Science and Technology, 41(7), 1268-1273. doi:https://doi.org/10.1016/j.lwt.2007.08.018
Yu, X. J., Liu, K. S., He, Y., & Wu, D. (2011). Color and texture classification of green tea using least squares support vector machine (lssvm). Paper presented at the Key Engineering Materials.
Zareiforoush, H., Minaei, S., Alizadeh, M. R., & Banakar, A. (2016). Qualitative classification of milled rice grains using computer vision and metaheuristic techniques. Journal of food science and technology, 53(1), 118-131. doi:https://doi.org/10.1007/s13197-015-1947-4
CAPTCHA Image
Volume 8, Issue 2
July 2019
Pages 189-200
  • Receive Date: 01 August 2018
  • Revise Date: 12 December 2018
  • Accept Date: 01 January 2019