The Encapsulation of Saffron Extract in Double Emulsion System and Stability Evaluation of Its Active Constituents using Principal Component Analysis Method during Storage Period

Document Type : Original Paper

Authors

1 Associate Professor, Khorasan Razavi Agricultural and Resources Research and Education Center, AREEO, Mashhad, Iran

2 Department of Food Science & Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

3 Associate Professor, Department of Food Science & Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

4 Professor, Department of Food Nanotechnology, Research Institute of Food Science & Technology, Mashhad, Iran

Abstract

In this study, a double emulsion system was developed based on an optimized initial simple emulsion with the view to increase the stability of effective saffron compounds (crocin, picrocrocin and safranal). To this end the effect of various concentrations of surfactant (10, 12.5 and 15%) and different types of carbohysrates (sucrose, sorbitol, and dextran) on the stability of simple emulsion was investigated. The principal component analysis method was used to identify the relationships between the quantitative changes of the active components and quality attributes of the emulsion. Based on the results, day 7 was recognized as a critical point on which dramatic changes in the quality attributes of the emulsion coincided with the loss of saffron active compounds. In other words, physical changes in the stability of emulshion correlated well with the destruction trend of active compounds, although picrocrocin changes were found to be of independents. Also, it was revealed that the incorporation of 1% w/w sorbitol into the aqueous extract of saffron significantly decreased the loss rate of saffron active compounds in the emulsion. In addition, the double emulsion increased the half-life of saffron active compounds during a 14 day storage period. The results showed that double emulsion system was a suitable method for saffron extract, but the qualitative properties of initial emulsion also had a great influence on their stability. Multivariate analysis methods can also be used to clarify the relationships between the qualitative properties of the emulsion and the active compounds entrapped within it.

Keywords

Alavizadeh, S. H., & Hosseinzadeh, H. (2014). Bioactivity assessment and toxicity of crocin: A comprehensive review. Food and Chemical Toxicology, 64, 65-80. doi:https://doi.org/10.1016/j.fct.2013.11.016
Anton, N., Benoit, J.-P., & Saulnier, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release, 128(3), 185-199. doi:https://doi.org/10.1016/j.jconrel.2008.02.007
Bathaie, S. Z., Bolhasani, A., Hoshyar, R., Ranjbar, B., Sabouni, F., & Moosavi-Movahedi, A.-A. (2007). Interaction of saffron carotenoids as anticancer compounds with ctDNA, Oligo (dG. dC) 15, and Oligo (dA. dT) 15. DNA and cell biology, 26(8), 533-540.
Benichou, A., Aserin, A., & Garti, N. (2004). Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Advances in Colloid and Interface Science, 108-109, 29-41. doi:https://doi.org/10.1016/j.cis.2003.10.013
Buffo, R. A., Reineccius, G. A., & Oehlert, G. W. (2001). Factors affecting the emulsifying and rheological properties of gum acacia in beverage emulsions. Food Hydrocolloids, 15(1), 53-66. doi:https://doi.org/10.1016/S0268-005X(00)00050-3
Caballero-Ortega, H., Pereda-Miranda, R., & Abdullaev, F. I. (2007). HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry, 100(3), 1126-1131. doi:https://doi.org/10.1016/j.foodchem.2005.11.020
Dickinson, E., & Ritzoulis, C. (2000). Creaming and Rheology of Oil-in-Water Emulsions Containing Sodium Dodecyl Sulfate and Sodium Caseinate. Journal of Colloid and Interface Science, 224(1), 148-154. doi:https://doi.org/10.1006/jcis.1999.6682
Fernandez, E. G. (2002). US Patent Patent No. 6458399.
Garti, N., & Bisperink, C. (1998). Double emulsions: Progress and applications. Current Opinion in Colloid & Interface Science, 3(6), 657-667. doi:https://doi.org/10.1016/S1359-0294(98)80096-4
Hanson, J. A., Chang, C. B., Graves, S. M., Li, Z., Mason, T. G., & Deming, T. J. (2008). Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature, 455(7209), 85-88.
Ioan, C. E., Aberle, T., & Burchard, W. (2000). Structure properties of dextran. 2. Dilute solution. Macromolecules, 33(15), 5730-5739.
ISO/TS 3632. (2003). Saffron (Crocus sativus L.) Part 1: specifications, Part 2: Test Methods. In. Geneva, Switzerland: ISO.
Ivanov, I. B., Danov, K. D., & Kralchevsky, P. A. (1999). Flocculation and coalescence of micron-size emulsion droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152(1), 161-182. doi:https://doi.org/10.1016/S0927-7757(98)00620-7
Jafari, S. M., He, Y., & Bhandari, B. (2007). Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Research International, 40(7), 862-873. doi:https://doi.org/10.1016/j.foodres.2007.02.002
Jiao, J., Rhodes, D. G., & Burgess, D. J. (2002). Multiple Emulsion Stability: Pressure Balance and Interfacial Film Strength. Journal of Colloid and Interface Science, 250(2), 444-450. doi:https://doi.org/10.1006/jcis.2002.8365
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.
Kadkhodaee, R., & Hemmati-Kakhki, A. (2006). Ultrasonic extraction of active compounds from saffron. Paper presented at the II International Symposium on Saffron Biology and Technology 739. doi:https://doi.org/10.17660/ActaHortic.2007.739.55
Mayne, S. T. (1996). Beta-carotene, carotenoids, and disease prevention in humans. The FASEB Journal, 10(7), 690-701.
Mcclements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical reviews in food science and nutrition, 47(7), 611-649.
Melnyk, J. P., Wang, S., & Marcone, M. F. (2010). Chemical and biological properties of the world's most expensive spice: Saffron. Food Research International, 43(8), 1981-1989. doi:https://doi.org/10.1016/j.foodres.2010.07.033
Najaf Najafi, M., Hosaini, V., Mohammadi-Sani, A., & Koocheki, A. (2016). Physical stability, flow properties and droplets characteristics of Balangu(Lallemantia royleana) seed gum / whey protein stabilized submicron emulsions. Food Hydrocolloids, 59, 2-8. doi:https://doi.org/10.1016/j.foodhyd.2016.02.017
Najafi, M. N., Kadkhodaee, R., & Mortazavi, S. A. (2011). Effect of drying process and wall material on the properties of encapsulated cardamom oil. Food biophysics, 6(1), 68-76. doi:https://doi.org/10.1007/s11483-010-9176-x
Nihant, N., Schugens, C., Grandfils, C., Jérôme, R., & Teyssié, P. (1994). Polylactide microparticles prepared by double emulsion/evaporation technique. I. Effect of primary emulsion stability. Pharmaceutical research, 11(10), 1479-1484.
Nylander, T., & Ericsson, B. (2004). Interactions between proteins and polar lipids. Food emulsions, 4.
Okada, H. (1997). One-and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Advanced drug delivery reviews, 28(1), 43-70.
Okushima, S., Nisisako, T., Torii, T., & Higuchi, T. (2004). Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 20(23), 9905-9908.
Orfanou, O., & Tsimidou, M. (1995). Influence of selected additives on the stability of saffron pigments in aqueous extracts. In G. Charalambous (Ed.), Developments in Food Science (Vol. 37, pp. 881-894): Elsevier.
Pays, K., Giermanska-Kahn, J., Pouligny, B., Bibette, J., & Leal-Calderon, F. (2002). Double emulsions: how does release occur? Journal of Controlled Release, 79(1), 193-205. doi:https://doi.org/10.1016/S0168-3659(01)00535-1
Petrovic, L. B., Sovilj, V. J., Katona, J. M., & Milanovic, J. L. (2010). Influence of polymer–surfactant interactions on o/w emulsion properties and microcapsule formation. Journal of Colloid and Interface Science, 342(2), 333-339. doi:https://doi.org/10.1016/j.jcis.2009.10.077
Sapei, L., Naqvi, M. A., & Rousseau, D. (2012). Stability and release properties of double emulsions for food applications. Food Hydrocolloids, 27(2), 316-323. doi:https://doi.org/10.1016/j.foodhyd.2011.10.008
Serrano-Díaz, J., Sánchez, A. M., Maggi, L., Carmona, M., & Alonso, G. L. (2011). Synergic effect of water-soluble components on the coloring strength of saffron spice. Journal of Food Composition and Analysis, 24(6), 873-879. doi:https://doi.org/10.1016/j.jfca.2011.03.014
Shu, B., Yu, W., Zhao, Y., & Liu, X. (2006). Study on microencapsulation of lycopene by spray-drying. Journal of Food Engineering, 76(4), 664-669. doi:https://doi.org/10.1016/j.jfoodeng.2005.05.062
Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid & Interface Science, 10(3), 102-110. doi:https://doi.org/10.1016/j.cocis.2005.06.004
Tadros, T. (2004). Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Advances in Colloid and Interface Science, 108-109, 227-258. doi:https://doi.org/10.1016/j.cis.2003.10.025
Tadros, T., Izquierdo, P., Esquena, J., & Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108-109, 303-318. doi:https://doi.org/10.1016/j.cis.2003.10.023
van der Graaf, S., Schroën, C. G. P. H., & Boom, R. M. (2005). Preparation of double emulsions by membrane emulsification—a review. Journal of Membrane Science, 251(1), 7-15. doi:https://doi.org/10.1016/j.memsci.2004.12.013
Walstra, P., & Smulders, P. E. (1998). Modern aspects of emulsion science.
Ziegler, R. G., Mayne, S. T., & Swanson, C. A. (1996). Nutrition and lung cancer. Cancer Causes Control, 7(1), 157-177. doi:https://doi.org/10.1007/bf00115646
Zougagh, M., Ríos, A., & Valcárcel, M. (2006). Determination of total safranal by in situ acid hydrolysis in supercritical fluid media: Application to the quality control of commercial saffron. Analytica Chimica Acta, 578(2), 117-121. doi:https://doi.org/10.1016/j.aca.2006.06.064
CAPTCHA Image
Volume 9, Issue 2
July 2020
Pages 127-142
  • Receive Date: 09 March 2019
  • Revise Date: 14 October 2019
  • Accept Date: 31 January 2020