Optimization of Formulation for Aerated Dessert Containing Whey Protein and Xanthan Gum Concentrate using Response Surface Methodology and Investigation on Rheological and Texture Properties

Document Type : Original Paper

Authors

1 Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Food Sciences and Technology, Neyshabur University of Medichal Sciences, Neyshabur, Iran

Abstract

Aerated dessert is a type of dessert based on the foam system, in which the presence of air in these desserts changes the rheological, sensory, and appearance characteristics. The aim of this study was optimization of aerated dessert using response surface methodology (RSM) and evaluate its rheological properties as a function of whey protein concentrate (2, 5 and 8%), xanthan gum (0.1, 0.25 and 0.4%) and whipping time (2, 5 and 8 min). The results showed that increasing protein and whipping time decreased density and increased overrun. Elevation of the xanthan gum concentration increased the density and decreased overrun. Optimal conditions for the production of aerated dessert foam with the lowest density and the highest overrun was determined in the concentration of xanthan gum 0.1% (low level), whey protein concentrate 8% (high level) and whipping time 8 min (High level). Power low model was the best model to describe flow behavior of the aerated dessert with high R2 (R2>0.99) and low RMSE (0.01). It was determined that with increasing the whey protein concentrate and xanthan gum decreased the flow behavior index and increased coefficient of consistency (P<0.05). Also, increasing the whey protein concentrate, xanthan gum and whipping time increased hardness, adhesiveness and consistency coefficient. The production of aerated desserts, in addition to producing a new product; increases the power of consumer choice and the profitability of the producer and can be an effective contribution to the growth of the industrial economy.

Keywords

Aime, D. B., Arntfield, S. D., Malcolmson, L. J., & Ryland, D. (2001). Textural analysis of fat reduced vanilla ice cream products. Food research international, 34(2), 237-246. doi:https://doi.org/10.1016/S0963-9969(00)00160-5
Akalın, A. S., Karagözlü, C., & Ünal, G. (2008). Rheological properties of reduced-fat and low-fat ice cream containing whey protein isolate and inulin. European Food Research and Technology, 227(3), 889-895. doi:https://doi.org/10.1007/s00217-007-0800-z
Alfaro Mohr, T. A. (2008). Effect of concentration and ph on fracture properties of aerated and non aerated whey protein gels. (Master's thesis), Pontificia Universidad Católica de Chile. Escuela de Ingeniería, Retrieved from https://repositorio.uc.cl/xmlui/handle/11534/1442?show=full
Bag, S. K., Srivastav, P. P., & Mishra, H. N. (2011). Optimization of Process Parameters for Foaming of Bael (Aegle marmelos L.) Fruit Pulp. Food and Bioprocess Technology, 4(8), 1450-1458. doi:https://doi.org/10.1007/s11947-009-0243-6
BahramParvar, M., Razavi, S. M., & Khodaparast, M. H. (2010). Rheological characterization and sensory evaluation of a typical soft ice cream made with selected food hydrocolloids. Food Science and Technology International, 16(1), 79-88. doi:https://doi.org/10.1177/1082013209353244
Barik, T. K., & Roy, A. (2009). Statistical distribution of bubble size in wet foam. Chemical engineering science, 64(9), 2039-2043. doi:https://doi.org/10.1016/j.ces.2009.01.039
Bikerman, J. J. (2013). Foams (Vol. 10): Springer Science & Business Media.
Dickinson, E., & Stainsby, G. (1982). Colloids in food: Applied Science Publishers.
Drenckhan, W., & Langevin, D. (2010). Monodisperse foams in one to three dimensions. Current opinion in colloid & interface science, 15(5), 341-358. doi:https://doi.org/10.1016/j.cocis.2010.06.002
Emadzadeh, B., Razavi, S. M. A., Hashemi, M., Nassiri Mahallati, M., & Farhoosh, R. (2011). Optimization of Fat Replacers and Sweetener Levels to Formulate Reduced- Calorie Pistachio Butter: A Response Surface Methodology. Journal of Nuts, 02(04), 37-54. doi:https://doi.org/10.22034/jon.2011.515737
Falade, K. O., & Omojola, B. S. (2010). Effect of Processing Methods on Physical, Chemical, Rheological, and Sensory Properties of Okra (Abelmoschus esculentus). Food and Bioprocess Technology, 3(3), 387-394. doi:https://doi.org/10.1007/s11947-008-0126-2
Goudarzi, M., Madadlou, A., Mousavi, M. E., & Emam-Djomeh, Z. (2015). Formulation of apple juice beverages containing whey protein isolate or whey protein hydrolysate based on sensory and physicochemical analysis. International Journal of Dairy Technology, 68(1), 70-78. doi:https://doi.org/10.1111/1471-0307.12155
Javidi, F., & Razavi, S. M. A. (2018). Rheological, physical and sensory characteristics of light ice cream as affected by selected fat replacers. Journal of Food Measurement and Characterization, 12(3), 1872-1884. doi:https://doi.org/10.1007/s11694-018-9801-9
Kumar, A., Rao, K. M., & Han, S. S. (2018). Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydrate Polymers, 180, 128-144. doi:https://doi.org/10.1016/j.carbpol.2017.10.009
Kurbanoglu, E. B., & Kurbanoglu, N. I. (2007). Ram horn hydrolysate as enhancer of xanthan production in batch culture of Xanthomonas campestris EBK-4 isolate. Process Biochemistry, 42(7), 1146-1149. doi:https://doi.org/10.1016/j.procbio.2007.04.010
Mehditabar, H., Razavi, S. M. A., & Javidi, F. (2020). Influence of pumpkin puree and guar gum on the bioactive, rheological, thermal and sensory properties of ice cream. International Journal of Dairy Technology, 73(2), 447-458. doi:https://doi.org/10.1111/1471-0307.12658
Mirarab Razi, S. (2014). Effect of Sodium Caseinate, Whey Protein Isolate, Albumin and Gelatin on Sensory and Physicochemical Properties of Chocolate Mousse. (Unpublished master's thesis), Faculty of Agriculture, Ferdowsi University of Mashhad,  (in Persian)
Muthukumaran, A., Ratti, C., & Raghavan, V. G. S. (2008). Foam-Mat Freeze Drying of Egg White and Mathematical Modeling Part I Optimization of Egg White Foam Stability. Drying Technology, 26(4), 508-512. doi:https://doi.org/10.1080/07373930801929581
Nicorescu, I., Vial, C., Talansier, E., Lechevalier, V., Loisel, C., Della Valle, D., . . . Legrand, J. (2011). Comparative effect of thermal treatment on the physicochemical properties of whey and egg white protein foams. Food Hydrocolloids, 25(4), 797-808. doi:https://doi.org/10.1016/j.foodhyd.2010.09.020
Niranjan, K., & Silva, S. F. J. (2008). Bubble-Containing Foods. In J. M. Aguilera & P. J. Lillford (Eds.), Food Materials Science: Principles and Practice (pp. 281-303). New York, NY: Springer New York.
O'Chiu, E., & Vardhanabhuti, B. (2017). Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels. Journal of Dairy Science, 100(5), 3404-3412. doi:https://doi.org/10.3168/jds.2016-12053
Ohmes, R. L., Marshall, R. T., & Heymann, H. (1998). Sensory and Physical Properties of Ice Creams Containing Milk Fat or Fat Replacers1. Journal of Dairy Science, 81(5), 1222-1228. doi:https://doi.org/10.3168/jds.S0022-0302(98)75682-6
Papalamprou, E. M., Makri, E. A., Kiosseoglou, V. D., & Doxastakis, G. I. (2005). Effect of medium molecular weight xanthan gum in rheology and stability of oil-in-water emulsion stabilized with legume proteins. Journal of the Science of Food and Agriculture, 85(12), 1967-1973. doi:https://doi.org/10.1002/jsfa.2159
Perez, O., Martinez, K., Carrera Sanchez, C., & Patino, J. (2017). Strategy for Foaming Improvement of Whey Protein Concentrates by Addition of Hydroxypropylmethylcellulose and Heating: Relation with Interfacial Properties. Nutr. Food Technol. Open Access, 3(2). doi:http://dx.doi.org/10.16966/2470-6086.141
Raharitsifa, N., Genovese, D. B., & Ratti, C. (2006). Characterization of Apple Juice Foams for Foam-mat Drying Prepared with Egg White Protein and Methylcellulose. Journal of Food Science, 71(3), E142-E151. doi:https://doi.org/10.1111/j.1365-2621.2006.tb15627.x
Rao, M. A. (2010). Rheology of fluid and semisolid foods: principles and applications: Springer Science & Business Media.
Razavi, S. M. A., Taghizadeh, M., & Shaker Ardekani, A. (2010). Modeling the Time-Dependent Rheological Properties of Pistachio Butter. Journal of Nuts, 01(01), 38-45. doi:https://doi.org/10.22034/jon.2010.515765
Salahi, M. R., Mohebbi, M., & Taghizadeh, M. (2015). Foam-Mat Drying of Cantaloupe (Cucumis melo): Optimization of Foaming Parameters and Investigating Drying Characteristics. Journal of Food Processing and Preservation, 39(6), 1798-1808. doi:https://doi.org/10.1111/jfpp.12414
Sankat, C. K., & Castaigne, F. (2004). Foaming and drying behaviour of ripe bananas. LWT - Food Science and Technology, 37(5), 517-525. doi:https://doi.org/10.1016/S0023-6438(03)00132-4
Soukoulis, C., Lebesi, D., & Tzia, C. (2009). Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chemistry, 115(2), 665-671. doi:https://doi.org/10.1016/j.foodchem.2008.12.070
Varela, P., Pintor, A., & Fiszman, S. (2014).  How hydrocolloids affect the temporal oral perception of ice cream. Food Hydrocolloids, 36, 220-228. doi:https://doi.org/10.1016/j.foodhyd.2013.10.005
Zayas, J. F. (1997). Solubility of Proteins. In Functionality of Proteins in Food (pp. 6-75). Berlin, Heidelberg: Springer Berlin Heidelberg.
Zimbru, R.-O., Pădureţ, S., & Amariei, S. (2020). Aerated confectionery: Physico-chemical and textural evaluation. Journal of Faculty of Food Engineering, 19(2), 122-130.
CAPTCHA Image
Volume 11, Issue 1
June 2022
Pages 1-16
  • Receive Date: 25 October 2020
  • Revise Date: 20 December 2020
  • Accept Date: 21 December 2020