The Effect of Cold Plasma on the Enzymatic Activity and Quality Characteristics of Mango Pulp

Document Type : Original Paper

Authors

1 Assistant Professor, Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt

2 Assistant Professor, Department of Food Processing, Research Institute of Food Science and Technology, Mashhad, Iran

3 Researcher, Food Safety Research Center, Semnan University of Medical Sciences, Semnan, Iran

Abstract

The ability to produce cold plasma in the atmosphere provides new opportunities for the decontamination of biological materials including fresh food. This technology is also used to inactivate endogenous enzymes, especially polyphenol oxidase and peroxidases, which are responsible for browning reactions. This study investigated the effect of Dielectric Barrier Discharge Plasma (DBDP) on the inactivation of enzymatic activity and some quality parameters in mango pulp. Results showed that DBDP treatment up to 10 min resulted in a reduction of polyphenol oxidase (10.85%), peroxidase (5.15%), and pectin methyl esterase (5.25 %) activities, aerobic plate count (16.6%), and yeast and mold count (18.8%) activities. An improvement was observed in physicochemical (especially viscosity and firmness values) and phytochemical (i.e. ascorbic acid, total phenol content) profiles as well as color values with increase DBDP treatment time until 6 min. This study provides the impact of DBDP time on the enzymatic activities and quality characteristics (especially phytochemical profiles) of mango pulp. Therefore, it is possible to use it as a new non-thermal alternative technology for pasteurizing mango pulp instead of thermal treatment.

Keywords

Abedelmaksoud, T., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., & Feyissa, A. H. (2018). Effect of ohmic heating parameters on inactivation of enzymes and quality of not-from-concentrate mango juice. Asian Journal of Scientific Research, 11(3), 383-392. doi:https://doi.org/10.3923/ajsr.2018.383.392
Abedelmaksoud, T. G., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., & Feyissa, A. H. (2018). Optimization of ohmic heating parameters for polyphenoloxidase inactivation in not-from-concentrate elstar apple juice using RSM. Journal of Food Science and Technology, 55(7), 2420-2428. doi:https://doi.org/10.1007/s13197-018-3159-1
Ahmed, J., Ramaswamy, H. S., & Hiremath, N. (2005). The effect of high pressure treatment on rheological characteristics and colour of mango pulp. International Journal of Food Science & Technology, 40(8), 885-895. doi:https://doi.org/10.1111/j.1365-2621.2005.01026.x
AOAC. (1990a). Chapter 37 (method 942.15 A). Official Methods of Analysis.
AOAC. (1990b). official method 934.06: moisture in dried fruits. Official Methods of Analysis of AOAC International.
Ayaseh, A., Alizadeh, M., Esmaiili, M., Mehrdad, A., & Javadzadeh, Y. (2014). Effect of thermosonication on peroxides enzyme activity and color parameters of carrot juice. Research and Innovation in Food Science and Technology, 3(3), 267-282. doi:https://doi.org/10.22101/JRIFST.2014.10.23.336
Bárdos, L., & Baránková, H. (2008). Plasma processes at atmospheric and low pressures. Vacuum, 83(3), 522-527. doi:https://doi.org/10.1016/j.vacuum.2008.04.063
Brandenburg, R., Ehlbeck, J., Stieber, M., v. Woedtke, T., Zeymer, J., Schlüter, O., & Weltmann, K.-D. (2007). Antimicrobial Treatment of Heat Sensitive Materials by Means of Atmospheric Pressure Rf-Driven Plasma Jet. Contributions to Plasma Physics, 47(1-2), 72-79. doi:https://doi.org/10.1002/ctpp.200710011
Brasil, I. M., & Siddiqui, M. W. (2018). Chapter 1 - Postharvest Quality of Fruits and Vegetables: An Overview. In M. W. Siddiqui (Ed.), Preharvest Modulation of Postharvest Fruit and Vegetable Quality (pp. 1-40): Academic Press.
Bursać Kovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317-323. doi:https://doi.org/10.1016/j.foodchem.2015.05.099
Chou, T. D., & Kokini, J. L. (1987). Rheological Properties and Conformation of Tomato Paste Pectins, Citrus and Apple Pectins. Journal of Food Science, 52(6), 1658-1664. doi:https://doi.org/10.1111/j.1365-2621.1987.tb05900.x
Dhali, S. K., & Sardja, I. (1989, May). Dielectric-barrier discharge for the removal of SO/sub 2/ from flue gas. Paper presented at the IEEE 1989 International Conference on Plasma Science, Buffalo, NY, USA.
González-Aguilar, G. A., Zavaleta-Gatica, R., & Tiznado-Hernández, M. E. (2007). Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biology and Technology, 45(1), 108-116. doi:https://doi.org/10.1016/j.postharvbio.2007.01.012
Hirschler, R. (2012). Chapter 10- Whiteness, yellowness, and browning in food colorimetry: a critical review (1st Edition ed.): CRC Press.
Kaleem, A., Nazir, H., Pervaiz, S., Iqtedar, M., Abdullah, R., Aftab, M., & Naz, S. (2016). Investigation of the effect of temperatute on vitamin C in fresh and packed fruit juices. FUUAST Journal of Biology, 6(1), 117-120.
Kaushik, N., Kaur, B. P., Rao, P. S., & Mishra, H. N. (2014). Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science & Emerging Technologies, 22, 40-50. doi:https://doi.org/10.1016/j.ifset.2013.12.011
Keener, K. M., Jensen, J., Valdramidis, V., Byrne, E., Connolly, J., Mosnier, J., & Cullen, P. (2012). Decontamination of Bacillus subtilis spores in a sealed package using a non-thermal plasma system. In Z. Machala, K. Hensel, & Y. Akishev (Eds.), Plasma for bio-decontamination, medicine and food security (pp. 445-455): Springer.
Khademi Pour, N., Sharifan, A., & Bakhoda, H. (2021). Study on the Phenolic Compounds and Antioxidant Activity of Gum Extract of Astragalus fasciculifolius Boiss. Research and Innovation in Food Science and Technology, 10(1), 59-70. doi:https://doi.org/10.22101/JRIFST.2021.257952.1201
Li, Y., Kojtari, A., Friedman, G., Brooks, A. D., Fridman, A., & Ji, H.-F. (2014). Decomposition of l-Valine under Nonthermal Dielectric Barrier Discharge Plasma. The Journal of Physical Chemistry B, 118(6), 1612-1620. doi:https://doi.org/10.1021/jp411440k
Liao, X., Li, J., Muhammad, A. I., Suo, Y., Chen, S., Ye, X., . . . Ding, T. (2018). Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd-Acp) for Eshcerichia Coli Inactivation in Apple Juice. Journal of Food Science, 83(2), 401-408. doi:https://doi.org/10.1111/1750-3841.14045
Liu, F., Liao, X., & Wang, Y. (2016). Effects of High-Pressure Processing with or without Blanching on the Antioxidant and Physicochemical Properties of Mango Pulp. Food and Bioprocess Technology, 9(8), 1306-1316. doi:https://doi.org/10.1007/s11947-016-1718-x
Mohsen, S., Murkovic, M., El-Nikeety, M., & Abedelmaksoud, T. (2013). Ohmic heating technology and quality characteristics of mango pulp. Journal of Food Industries and Nutrition Science, 3(1), 69-83.
Pankaj, S. K., Misra, N. N., & Cullen, P. J. (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Science & Emerging Technologies, 19, 153-157. doi:https://doi.org/10.1016/j.ifset.2013.03.001
Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods (Basel, Switzerland), 7(1), 4. doi:https://doi.org/10.3390/foods7010004
Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6(1), 36-60. doi:https://doi.org/10.1007/s11947-012-0867-9
Pignata, C., D'Angelo, D., Fea, E., & Gilli, G. (2017). A review on microbiological decontamination of fresh produce with nonthermal plasma. J Appl Microbiol, 122(6), 1438-1455. doi:https://doi.org/10.1111/jam.13412
Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., & Rocculi, P. (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107, 55-65. doi:https://doi.org/10.1016/j.postharvbio.2015.04.008
Ribeiro, S. M. R., & Schieber, A. (2010). Chapter 34 - Bioactive Compounds in Mango (Mangifera indica L.). In R. R. Watson & V. R. Preedy (Eds.), Bioactive Foods in Promoting Health (pp. 507-523). San Diego: Academic Press.
Sarangapani, C., Thirumdas, R., Devi, Y., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2016). Effect of low-pressure plasma on physico–chemical and functional properties of parboiled rice flour. Lwt - Food Science and Technology, 69, 482-489. doi:https://doi.org/10.1016/j.lwt.2016.02.003
Segat, A., Misra, N. N., Cullen, P. J., & Innocente, N. (2016). Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing, 98, 181-188. doi:https://doi.org/10.1016/j.fbp.2016.01.010
Shahidi Noghabi, M., Niazmand, R., Sarraf, M., & Shahidi Noghabi, M. (2019). Investigating the Effect of Preservatives and Antioxidant on the Oxidative and Microbial Properties of Walnut Butter during the Shelf-life. Research and Innovation in Food Science and Technology, 8(2), 151-164. doi:https://doi.org/10.22101/JRIFST.2019.07.22.824
Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem, 53(20), 7749-7759. doi:https://doi.org/10.1021/jf051513y
Stoffels, E., Sakiyama, Y., & Graves, D. B. (2008). Cold Atmospheric Plasma: Charged Species and Their Interactions With Cells and Tissues. IEEE Transactions on Plasma Science, 36(4), 1441-1457. doi:https://doi.org/10.1109/TPS.2008.2001084
Tappi, S., Berardinelli, A., Ragni, L., Dalla Rosa, M., Guarnieri, A., & Rocculi, P. (2014). Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies, 21, 114-122. doi:https://doi.org/10.1016/j.ifset.2013.09.012
Tharanathan, R. N., Yashoda, H. M., & Prabha, T. N. (2006). Mango (Mangifera indica L.), “The King of Fruits”-An Overview. Food Reviews International, 22(2), 95-123. doi:https://doi.org/10.1080/87559120600574493
Tolouie, H., Mohammadifar, M. A., Ghomi, H., Yaghoubi, A. S., & Hashemi, M. (2018). The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innovative Food Science & Emerging Technologies, 47, 346-352. doi:https://doi.org/10.1016/j.ifset.2018.03.002
Wang, R. X., Nian, W. F., Wu, H. Y., Feng, H. Q., Zhang, K., Zhang, J., . . . Fang, J. (2012). Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. The European Physical Journal D, 66(10), 276. doi:https://doi.org/10.1140/epjd/e2012-30053-1
Wang, Y., Liu, F., Cao, X., Chen, F., Hu, X., & Liao, X. (2012). Comparison of high hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innovative Food Science and Emerging Technologies, 16(Complete), 326-334. doi:https://doi.org/10.1016/j.ifset.2012.07.006
Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food and Bioprocess Technology, 10(10), 1778-1791. doi:https://doi.org/10.1007/s11947-017-1947-7
Zhiqing, G., Li, D., Liu, C., Cheng, A., & Wang, W. (2015). Partial purification and characterization of polyphenol oxidase and peroxidase from chestnut kernel. Lwt - Food Science and Technology, 60(2), 1095-1099. doi:https://doi.org/10.1016/j.lwt.2014.10.012
Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., & Bourke, P. (2013). Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol, 114(3), 778-787. doi:https://doi.org/10.1111/jam.12087
CAPTCHA Image
Volume 10, Issue 4
January 2022
Pages 341-350
  • Receive Date: 21 September 2020
  • Revise Date: 16 December 2020
  • Accept Date: 15 January 2021