The Effect of Some Fermentation Conditions on the Production of Kefiran by Kefir Grains in Fermented Milk

Document Type : Original Paper

Authors

1 MSc. Graduate, Department of Food Science and Technology, Azadshahr branch, Islamic Azad University, Azadshahr, Iran

2 Assistant Professor, Department of Microbiology, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran

Abstract

Kefir is produced from the fermentation of milk by microorganisms in kefir grains. Kefir grains include lactic acid bacteria, yeast, and acetic acid bacteria surrounded by a protein matrix and polysaccharide called kefiran. One of the most important antibacterial compounds of this beverage is microbial exopolysaccharide of kefiran. The present study aimed to investigate the effect of milk type, fermentation time, temperature, and stirring conditions on the production of kefiran by kefir grains. Activated kefir grains were added to full-fat and non-fat milk. Fermentation was carried out at 25 and 37 °C under stirred and non-stirred. After 24, 48, 72, and 120 h of fermentation, the grains were separated from kefir extract and kefiran exopolysaccharide was extracted from kefir grains. The effect of these variables and their interaction on the production of kefiran using Design-Expert software and full factorial design have been analyzed. Also, the MIC and MBC of extracted kefiran were determined against Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Shigella dysenteriae. All fermentation conditions and their interactions had a significant effect on kefiran production. Considering all fermentation conditions and interaction of all factors, more kefiran were produced in fermented kefir grains at 37 °C compared to 25 °C, in full-fat milk compared to non-fat milk, under stirred conditions compared to non-stirred and fermented beverages for 48 and 120 h. MIC and MBC of extracted kefiran for tested bacteria were determined in the range of 1.4-11.25 mg/mL.

Keywords

Ajam, F., & Koohsari, H. (2020). Effect of some fermentation conditions on antibacterial activity of fermented milk by kefir grains. Journal of Food Processing and Preservation, 44(12), e14913. doi:https://doi.org/10.1111/jfpp.14913
Clinical and Laboratory Standards Institute [CLSI]. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In (11th ed. CLSI standard M07 ed.): Clinical and Laboratory Standards Institute, 950 West Valley Road, Suit 2500, Wayne, Pennsylvania 19087 USA.
Dias, P. A., Silva, D. T. d., Tejada, T. S., Leal, M. C. G. M., Conceição, R. d. C. d. S. d., & Timm, C. D. (2012). Survival of pathogenic microorganisms in kefir. Revista do Instituto Adolfo Lutz (Impresso), 71(1), 182-186.
Farag, M. A., Jomaa, S. A., El-Wahed, A., & R El-Seedi, H. (2020). The many faces of kefir fermented dairy products: Quality characteristics, flavour chemistry, nutritional value, health benefits, and safety. Nutrients, 12(2), 346. doi:https://doi.org/10.3390/nu12020346
Farnworth, E. R. (2006). Kefir–a complex probiotic. Food Science and Technology Bulletin: Fu, 2(1), 1-17.
Farnworth, E. R., & Mainville, I. (2008). Kefir-A fermented milk product. In E. R. Farnworth (Ed.), Handbook of Fermented Functional Foods (Second ed.): CRC Press.
Florence, A. C. R., Oliveira, R. P., Silva, R. C., Soares, F. A., Gioielli, L. A., & Oliveira, M. N. (2012). Organic milk improves Bifidobacterium lactis counts and bioactive fatty acids contents in fermented milk. LWT, 49(1), 89-95. doi:https://doi.org/10.1016/j.lwt.2012.04.023
Frengova, G. I., Simova, E. D., Beshkova, D. M., & Simov, Z. I. (2002). Exopolysaccharides produced by lactic acid bacteria of kefir grains. Zeitschrift für Naturforschung C, 57(9-10), 805-810. doi:https://doi.org/10.1515/znc-2002-9-1009
Gao, J., Gu, F., Ruan, H., Chen, Q., He, J., & He, G. (2013). Induction of apoptosis of gastric cancer cells SGC7901 in vitro by a cell-free fraction of Tibetan kefir. International Dairy Journal, 30(1), 14-18. doi:https://doi.org/10.1016/j.idairyj.2012.11.011
Guzel-Seydim, Z., Seydim, A., & Greene, A. (2003). Comparison of amino acid profiles of milk, yogurt and Turkish Kefir. Milchwissenschaft-Milk Science International, 58, 158-160.
Hadisaputro, S., Djokomoeljanto, R., & Soesatyo, M. (2012). The effects of oral plain kefir supplementation on proinflammatory cytokine properties of the hyperglycemia Wistar rats induced by streptozotocin. Acta Med Indones, 44(2), 100-104.
Harta, O., Iconomopoulou, M., Bekatorou, A., Nigam, P., Kontominas, M., & Koutinas, A. (2004). Effect of various carbohydrate substrates on the production of kefir grains for use as a novel baking starter. Food Chemistry, 88(2), 237-242. doi:https://doi.org/10.1016/j.foodchem.2003.12.043
Hertzler, S. R., & Clancy, S. M. (2003). Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. Journal of the American Dietetic association, 103(5), 582-587. doi:https://doi.org/10.1053/jada.2003.50111
Ismaiel, A. A., Ghaly, M. F., & El-Naggar, A. K. (2011). Some physicochemical analyses of kefir produced under different fermentation conditions. Journal of Scientific and Industrial Research, 70(5), 365-372.
Kim, D.-H., Jeong, D., Kim, H., Kang, I.-B., Chon, J.-W., Song, K.-Y., & Seo, K.-H. (2016). Antimicrobial activity of kefir against various food pathogens and spoilage bacteria. Korean journal for food science of animal resources, 36(6), 787. doi:https://doi.org/10.5851/kosfa.2016.36.6.787
Kök-Taş, T., Seydim, A. C., Özer, B., & Guzel-Seydim, Z. B. (2013). Effects of different fermentation parameters on quality characteristics of kefir. Journal of dairy science, 96(2), 780-789. doi:https://doi.org/10.3168/jds.2012-5753
Kukhtyn, M., Vichko, O., Kravets, O., Karpyk, H., Shved, O., & Novikov, V. (2018). Biochemical and microbiological changes during fermentation and storage of a fermented milk product prepared with Tibetan Kefir Starter. Archivos Latinoamericanos De Nutricion, 68(4), 336-343.
Lee, M.-Y., Ahn, K.-S., Kwon, O.-K., Kim, M.-J., Kim, M.-K., Lee, I.-Y., . . . Lee, H.-K. (2007). Anti-inflammatory and anti-allergic effects of kefir in a mouse asthma model. Immunobiology, 212(8), 647-654. doi:https://doi.org/10.1016/j.imbio.2007.05.004
Leite, A. M. d. O., Miguel, M. A. L., Peixoto, R. S., Rosado, A. S., Silva, J. T., & Paschoalin, V. M. F. (2013). Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage. Brazilian Journal of Microbiology, 44(2), 341-349.
Maeda, H., Zhu, X., Omura, K., Suzuki, S., & Kitamura, S. (2004). Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors, 22(1‐4), 197-200. doi:https://doi.org/10.1002/biof.5520220141
Maeda, H., Zhu, X., Suzuki, S., Suzuki, K., & Kitamura, S. (2004). Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2BT. Journal of agricultural and food chemistry, 52(17), 5533-5538. doi:https://doi.org/10.1021/jf049617g
Moradi, Z., & Kalanpour, N. (2019). Kefiran, a branched polysaccharide: Preparation, properties and applications: A review. Carbohydrate polymers, 223, 115100. doi:https://doi.org/10.1016/j.carbpol.2019.115100
Paraskevopoulou, A., Athanasiadis, I., Kanellaki, M., Bekatorou, A., Blekas, G., & Kiosseoglou, V. (2003). Functional properties of single cell protein produced by kefir microflora. Food research international, 36(5), 431-438. doi:https://doi.org/10.1016/S0963-9969(02)00176-X
Piermaria, J. A., Pinotti, A., Garcia, M. A., & Abraham, A. G. (2009). Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food hydrocolloids, 23(3), 684-690. doi:https://doi.org/10.1016/j.foodhyd.2008.05.003
POP, C., Apostu, S., Salanţă, L., Rotar, A. M., Sindic, M., Mabon, N., & SOCACIU, C. (2014). Influence of different growth conditions on the kefir grains production used in the kefiran synthesis. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Food Science and Technology, 71(2), 147-153. doi:https://doi.org/10.15835/buasvmcn-fst:10802
Prado, M. R., Blandón, L. M., Vandenberghe, L. P., Rodrigues, C., Castro, G. R., Thomaz-Soccol, V., & Soccol, C. R. (2015). Milk kefir: composition, microbial cultures, biological activities, and related products. Frontiers in microbiology, 6, 1177. doi:https://doi.org/10.3389/fmicb.2015.01177
Rahimzadeh, G., Bahar, M. A., & Amir Mozaffari, N. (2012). Antimicrobial activity Kefir on different time fermentation. Iranian Journal of Medical Microbiology, 5(4), 35-41.
Rahimzadeh, G., Fazeli, M., Mozafari, A. N., & Mesbahi, M. (2015). Evaluation of anti-microbial activity and wound healing of kefir. International Journal of Pharmaceutical Sciences and Research, 6(1), 286-293.
Ramchandran, L., & Shah, N. P. (2009). Effect of exopolysaccharides and inulin on the proteolytic, angiotensin-I-converting enzyme-and α-glucosidase-inhibitory activities as well as on textural and rheological properties of low-fat yogurt during refrigerated storage. Dairy science & technology, 89(6), 583-600. doi:https://doi.org/10.1051/dst/2009039
Rattray, F., & O’connell, M. (2011). Fermented Milks| Kefir. In P. F. F. John W. Fuquay, P. L. H. McSweeney (Ed.), Encyclopedia of Dairy Sciences (2 ed., pp. 518-524): Elsevier.
Rezaei, M., Zaghian, S., & Emtiazi, G. (2012). Purification, Characterization, and Determination of Antimicrobial Activity of Kefiran. Journal of Isfahan Medical School, 30(202), 1277-1283.
Rimada, P. S., & Abraham, A. G. (2001). Polysaccharide production by kefir grains during whey fermentation. The Journal of dairy research, 68(4), 653-661. doi:https://doi.org/10.1017/S0022029901005131
Rimada, P. S., & Abraham, A. G. (2003). Comparative study of different methodologies to determine the exopolysaccharide produced by kefir grains in milk and whey. Le Lait, 83(1), 79-87. doi:https://doi.org/10.1051/lait:2002051
Rodrigues, K. L., Caputo, L. R. G., Carvalho, J. C. T., Evangelista, J., & Schneedorf, J. M. (2005). Antimicrobial and healing activity of kefir and kefiran extract. International journal of antimicrobial agents, 25(5), 404-408. doi:https://doi.org/10.1016/j.ijantimicag.2004.09.020
Taniguchi, M., Nomura, M., Itaya, T., & Tanaka, T. (2001). Kefiran production by Lactobacillus kefiranofaciens under the culture conditions established by mimicking the existence and activities of yeast in kefir grains. Food science and technology research, 7(4), 333-337. doi:https://doi.org/10.3136/fstr.7.333
Taylor, G. R., & Williams, C. M. (1998). Effects of probiotics and prebiotics on blood lipids. British Journal of Nutrition, 80(S2), S225-S230. doi:https://doi.org/10.1017/S0007114500006073
Weschenfelder, S., Paim, M. P., Gerhardt, C., Carvalho, H. H. C., & Wiest, J. M. (2018). Antibacterial activity of different formulations of cheese and whey produced with kefir grains. Revista Ciência Agronômica, 49(3), 443-449. doi:https://doi.org/10.5935/1806-6690.20180050
Yeesang, C., Chanthachum, S., & Cheirsilp, B. (2008). Sago starch as a low-cost carbon source for exopolysaccharide production by Lactobacillus kefiranofaciens. World Journal of Microbiology and Biotechnology, 24(7), 1195-1201. doi:https://doi.org/10.1007/s11274-007-9592-3
Yokoi, H., & Watanabe, T. (1992). Optimum culture conditions for production of kefiran by Lactobacillus sp. KPB-167B isolated from kefir grains. Journal of fermentation and bioengineering, 74(5), 327-329. doi:https://doi.org/10.1016/0922-338X(92)90069-7
Zajšek, K., & Goršek, A. (2011). Experimental assessment of the impact of cultivation conditions on kefiran production by the mixed microflora imbedded in kefir grains. Chemical Engineering Transactions, 24(April), 481-486.
CAPTCHA Image
Volume 9, Issue 4
February 2021
Pages 399-410
  • Receive Date: 09 December 2020
  • Revise Date: 16 January 2021
  • Accept Date: 20 January 2021