Predicting the Moisture Ratio of Dried Tomato Slices Uusing Artificial Neural Network and Genetic Aalgorithm Modeling

Document Type : Original Paper

Authors

1 Assistant Professor, Department of Food Science and Technology, Roudehen Branch, Islamic Azad University, Roudehen, Iran

2 Academic Instructor, Zabol University of Medical Sciences, Zabol, Iran

3 Assistant Professor, Department of Food Science and Technology, Tuyserkan Faculty of Engineering & Natural Resources, Bu-Ali Sina University, Hamedan, Iran

4 PhD. Graduate, Department of Food Sciences and Technology, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Nowadays, mathemathical simulation and modeling of drying curves are useful instruments in order to improve control systems for final product quality under various conditions. These approaches are usually applied for studying the factors present in the process, optimization of the conditions and working factors as well as predicting the drying kinetics of products. Two intelligent tools including artificial neural network (ANN) and genetic algorithm (GA) were used in the current paper for predicting tomato drying kinetics. For this purpose, four mathematical models were taken from the literatures, then they were matched with the empirical data. Final step was choosing the best fitting model for tomato drying curves. According to the results, the model proposed by Aghbashlo et al (Agh-m) showed great performance in predicting the moisture ratio of the dried tomato slices. Moreover, the genetic algorithm was utilized for optimization of the best empirical model. Ultimately, the results were compared with the findings observed in ANN and GA models. The comparison indicated that the GA model offers higher accuracy for predicting the moisture ratio of dried tomato with the correlation coefficient (R2) of 0.9987.

Keywords

Abbaszadeh, A., Motevali, A., Khoshtaghaza, M., & Kazemi, M. (2011). Evaluation of thin-layer drying models and neural network for describing drying kinetics of Lasagnas angustifolia L. International Food Research Journal, 18(4), 1321.
Abdolshahi, A., Heydari Majd, M., Abdollahi, M., Fatemizadeh, S., & Monjazeb Marvdashti, L. (2020). Edible Film Based on Lallemantia peltata L. Seed Gum: Development and Characterization. Journal of Chemical Health Risks, in Press. doi:https://doi.org/10.22034/jchr.2020.1896596.1118
Aghajani, N., Kashaninejad, M., Dehghani, A. A., & Daraei Garmakhany, A. (2012). Comparison between artificial neural networks and mathematical models for moisture ratio estimation in two varieties of green malt. Quality Assurance and Safety of Crops & Foods, 4(2), 93-101. doi:https://doi.org/10.1111/j.1757-837X.2012.00125.x
Ajani, C., Curcio, S., Dejchanchaiwong, R., & Tekasakul, P. (2019). Influence of shrinkage during natural rubber sheet drying: Numerical modeling of heat and mass transfer. Applied Thermal Engineering, 149, 798-806. doi:https://doi.org/10.1016/j.applthermaleng.2018.12.054
Akanbi, C. T., Adeyemi, R. S., & Ojo, A. (2006). Drying characteristics and sorption isotherm of tomato slices. Journal of food engineering, 73(2), 157-163. doi:https://doi.org/10.1016/j.jfoodeng.2005.01.015
Aktaş, M., Şevik, S., Özdemir, M. B., & Gönen, E. (2015). Performance analysis and modeling of a closed-loop heat pump dryer for bay leaves using artificial neural network. Applied Thermal Engineering, 87,714-723. doi:https://doi.org/10.1016/j.applthermaleng.2015.05.049
AOAC. (1990). Official methods of analysis. Washington: Association of Official Analytical Chemists.
Badaoui, O., Hanini, S., Djebli, A., Haddad, B., & Benhamou, A. (2019). Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renewable energy, 133, 144-155. doi:https://doi.org/10.1016/j.renene.2018.10.020
Castro, A., Mayorga, E., & Moreno, F. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of food engineering, 223, 152-167. doi:https://doi.org/10.1016/j.jfoodeng.2017.12.012
Cernîşev, S. (2010). Effects of conventional and multistage drying processing on non-enzymatic browning in tomato. Journal of food engineering, 96(1), 114-118. doi:https://doi.org/10.1016/j.jfoodeng.2009.07.002
Demiray, E., Tulek, Y., & Yilmaz, Y. (2013). Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT-Food Science and Technology, 50(1), 172-176. doi:https://doi.org/10.1016/j.lwt.2012.06.001
Diamante, L. M., Ihns, R., Savage, G. P., & Vanhanen, L. (2010). A new mathematical model for thin layer drying of fruits. International journal of food science & technology, 4(9), 1956-1962. doi:https://doi.org/10.1111/j.1365-2621.2010.02345.x
Doymaz, I. (2004a). Convective air drying characteristics of thin layer carrots. Journal of food engineering, 61(3), 359-364. doi:https://doi.org/10.1016/S0260-8774(03)00142-0
Doymaz, İ. (2004b). Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosystems Engineering, 89(3), 281-287. doi:https://doi.org/10.1016/j.biosystemseng.2004.07.009
Doymaz, İ., & İsmail, O. (2011). Drying characteristics of sweet cherry. Food and bioproducts processing, 89(1), 31-38. doi:https://doi.org/10.1016/j.fbp.2010.03.006
Erenturk, S., & Erenturk, K. (2007). Comparison of genetic algorithm and neural network approaches for the drying process of carrot. Journal of food engineering, 78(3), 905-912. doi:https://doi.org/10.1016/j.jfoodeng.2005.11.031
Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of food engineering, 98(4), 461-470. doi:https://doi.org/10.1016/j.jfoodeng.2010.01.029
Garau, M., Simal, S., Femenia, A., & Rosselló, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of food engineering, 75(2), 288-295. doi:https://doi.org/10.1016/j.jfoodeng.2005.04.017
Guiné, R. P., Pinho, S., & Barroca, M. J. (2011). Study of the convective drying of pumpkin (Cucurbita maxima). Food and bioproducts processing, 89(4), 422-428. doi:https://doi.org/10.1016/j.fbp.2010.09.001
Heydari-Majd, M., Ghanbarzadeh, B., Shahidi-Noghabi, M., Abdolshahi, A., Dahmardeh, S., & Mohammadi, M. M. (2020). Poly (lactic acid)-based bionanocomposites: effects of ZnO nanoparticles and essential oils on physicochemical properties. Polymer Bulletin, 1-23. doi:https://doi.org/10.1007/s00289-020-03490-z
Kashiri, M., Daraei Garmakhany, A., & Dehghani, A. A. (2012). Modelling of sorghum soaking using artificial neural networks (MLP). Quality Assurance and Safety of Crops & Foods, 4(4), 179-184. doi:https://doi.org/10.1111/j.1757-837X.2012.00184.x
Katoch, S., Chauhan, S. S., & Kumar, V. (2020). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 1-36. doi:https://doi.org/10.1007/s11042-020-10139-6
Kerdpiboon, S., Kerr, W. L., & Devahastin, S. (2006). Neural network prediction of physical property changes of dried carrot as a function of fractal dimension and moisture content. Food research international, 39(10), 1110-1118. doi:https://doi.org/10.1016/j.foodres.2006.07.019
Li, Z., Li, P., & Liu, J. (2011). Physical and mechanical properties of tomato fruits as related to robot’s harvesting. Journal of food engineering, 103(2), 170-178. doi:https://doi.org/10.1016/j.jfoodeng.2010.10.013
Mayor, L., & Sereno, A. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of food engineering, 61(3), 373-386. doi:https://doi.org/10.1016/S0260-8774(03)00144-4
Mewa, E. A., Okoth, M. W., Kunyanga, C. N., & Rugiri, M. N. (2019). Experimental evaluation of beef drying kinetics in a solar tunnel dryer. Renewable energy, 139, 235-241. doi:https://doi.org/10.1016/j.renene.2019.02.067
Mokhtarian, M., Heydari Majd, M., Koushki, F., Bakhshabadi, H., Daraei Garmakhany, A., & Rashidzadeh, S. (2014a). Optimisation of pumpkin mass transfer kinetic during osmotic dehydration using artificial neural network and response surface methodology modelling. Quality Assurance and Safety of Crops & Foods, 6(2), 201-214. doi:https://doi.org/10.3920/QAS2012.0121
Mokhtarian, M., Koushki, F., Bakhshabadi, H., Askari, B., Garmakhany, A. D., & Rashidzadeh, S. (2014b). Feasibility investigation of using artificial neural network in process monitoring of pumpkin air drying. Quality Assurance and Safety of Crops & Foods, 6(2), 191-199. doi:https://doi.org/10.3920/QAS2012.0119
Mousavi, M., & Javan, S. (2009). Modeling and simulation of apple drying, using artificial neural network and neuro-taguchi’s method. Journal of Agricultural Science and Technology (JAST), 11, 559-571.
Mozumder, N., Rahman, M., Kamal, M., Mustafa, A., & Rahman, M. (2012). Effects of pre-drying chemical treatments on quality of cabinet dried tomato powder. Journal of Environmental Science and Natural Resources, 5(1), 253-265.
Mpotokwane, S., Gaditlhatlhelwe, E., Sebaka, A., & Jideani, V. A. (2008). Physical properties of bambara groundnuts from Botswana. Journal of food engineering, 89(1), 93-98. doi:https://doi.org/10.1016/j.jfoodeng.2008.04.006
Pu, Y.-Y., & Sun, D.-W. (2017). Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution. Biosystems Engineering, 156, 108-119. doi:https://doi.org/10.1016/j.biosystemseng.2017.01.006
Salarbashi, D., Tafaghodi, M., & Heydari-Majd, M. (2020). Fabrication of curcumin-loaded soluble soy bean polysaccharide/TiO2 bio-nanocomposite for improved antimicrobial activity. Nanomedicine Journal, 7(4), 291-298. doi:https://doi.org/10.22038/NMJ.2020.07.00005
Shakouri, S., Ziaolhagh, H. R., Sharifi-Rad, J., Heydari-Majd, M., Tajali, R., Nezarat, S., & Da Silva, J. A. T. (2015). The effect of packaging material and storage period on microwave-dried potato (Solanum tuberosum L.) cubes. Journal of food science and technology, 52(6), 3899-3910. doi:https://doi.org/10.1007/s13197-014-1464-x
Singh, N. J. (2011). Neural network approaches for prediction of drying kinetics during drying of sweet potato. Agricultural Engineering International: CIGR Journal, 13(1).
Taheri-Garavand, A., Rafiee, S., & Keyhani, A. (2011). Mathematical modeling of thin layer drying kinetics of tomato influence of air dryer conditions. Int Trans. J. Eng. Manage. Sci. Tech, 2, 147-160.
Tavakolipour, H., & Mokhtarian, M. (2012). Neural network approaches for prediction of pistachio drying kinetics. International Journal of Food Engineering, 8(3). doi:https://doi.org/10.1515/1556-3758.2481
Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41-47. doi:https://doi.org/10.1016/j.jssas.2013.06.002
CAPTCHA Image
Volume 9, Issue 4
February 2021
Pages 411-422
  • Receive Date: 21 December 2020
  • Revise Date: 24 January 2021
  • Accept Date: 25 January 2021