
 

www.journals.rifst.ac.ir 
Journal of Research and Innovation 

in Food Science and Technology 
9 (2021) 4, 411-422 

DOI: 10.22101/jrifst.2021.258797.1203 
 

Original Paper 

 
Predicting the Moisture Ratio of Dried Tomato Slices Uusing Artificial 

Neural Network and Genetic Aalgorithm Modeling 

Mohsen Mokhtarian1, Mojtaba Heydari Majd2, Amir Daraei Garmakhany3,  
Elham Zaerzadeh4* 

1- Assistant Professor, Department of Food Science and Technology, Roudehen Branch, Islamic Azad 
University, Roudehen, Iran 

2- Academic Instructor, Zabol University of Medical Sciences, Zabol, Iran 
3- Assistant Professor, Department of Food Science and Technology, Tuyserkan Faculty of 

Engineering & Natural Resources, Bu-Ali Sina University, Hamedan, Iran 
4- PhD. Graduate, Department of Food Sciences and Technology, Ferdowsi University of Mashhad, 

Mashhad, Iran 
*Corresponding author (zaerzadeh.elham@alumni.um.ac.ir) 

Abstract  
Nowadays, mathemathical simulation and modeling of drying 
curves are useful instruments in order to improve control systems 
for final product quality under various conditions. These 
approaches are usually applied for studying the factors present in 
the process, optimization of the conditions and working factors as 
well as predicting the drying kinetics of products. Two intelligent 
tools including artificial neural network (ANN) and genetic 
algorithm (GA) were used in the current paper for predicting 
tomato drying kinetics. For this purpose, four mathematical 
models were taken from the literatures, then they were matched 
with the empirical data. Final step was choosing the best fitting 
model for tomato drying curves. According to the results, the 
model proposed by Aghbashlo et al (Agh-m) showed great 
performance in predicting the moisture ratio of the dried tomato 
slices. Moreover, the genetic algorithm was utilized for 
optimization of the best empirical model. Ultimately, the results 
were compared with the findings observed in ANN and GA 
models. The comparison indicated that the GA model offers 
higher accuracy for predicting the moisture ratio of dried tomato 
with the correlation coefficient (R2) of 0.9987. 
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Introduction  
Tomato (Lycopersicone sculantumL.) is a 
species of the Solanaceae family that 
commonly consumed as fresh in world 
(Badaoui, Hanini, Djebli, Haddad, & 
Benhamou, 2019; Mozumder, Rahman, 
Kamal, Mustafa, & Rahman, 2012). It is 
also used in forms of paste, canned, dried, 
juice and sauces (Akanbi, Adeyemi, & Ojo, 
2006). As it contains high levels of 
polyphenols (10-50 mg/kg), lycopene (60-
90 mg/kg), vitamin C and some amount of 

vitamin E (5-20 mg/kg), it is assumed as a 
good source of antioxidants (Demiray, 
Tulek, & Yilmaz, 2013; Mozumder et al., 
2012). Thus, it is necessary to select 
appropriate approaches to keep its properties 
and decrease losses after harvest (Shakouri, 
Ziaolhagh, Sharifi-Rad, Heydari-Majd, 
Tajali, Nezarat, & Da Silva, 2015). Drying 
is one of these method to maintain the 
quality. Mathematical simulation and 
modeling of drying curves under various 
conditions could improve quality control 
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systems (Ajani, Curcio, Dejchanchaiwong, 
& Tekasakul, 2019; Mokhtarian, Heydari 
Majd, Koushki, Bakhshabadi, Daraei 
Garmakhany, & Rashidzadeh, 2014a). 
These approaches are usually applied for 
studying the variables present in the 
process, optimization of the conditions and 
working parameters as well as  predicting 
the drying kinetics of product (Garau, 
Simal, Femenia, & Rosselló, 2006). Several 
researchers have worked on modeling of 
drying kinetic for different products. For 
instance, Tavakolipour & Mokhtarian 
(2012) studied pistachio nut’s drying kinetic 
and stated that the Modified Page model 
showed the best results for predicting the 
moisture ratio (MR). Taheri-Garavand, 
Rafiee, & Keyhani (2011) investigated the 
monolayer drying kinetics of tomato slice 
under air drying condition. Their findings 
showed that Midilli model provided 
acceptable correlation in predicting tomato 
drying curve. In a study by Guiné, Pinho, & 
Barroca (2011), behavior of pumpkin was 
observed during drying. According to the 
results, the drying process can be strongly 
accelerated by the increase in temperature. 
It was in such a way that the process was 
taken for 8 h at 30 oC, while the process of 
drying ended after only 2 h at 70 °C. The 
empirical data fitting to the various models 
for prediction of moisture ratio was done, 
and Page and modified Page were identified 
as the best fitted models. Diamante, Ihns, 
Savage, & Vanhanen (2010) proposed a 
new mathematical relationship for mono-
layer drying to be used on the fruits. 
According to their findings, this equation 
presented the largest coefficient of 
determination for apricot & kiwi, closely 
followed by Page equation. Furthermore, 
their results showed that the suggested 
equation provides the best curve fitting for 
kiwi and apricot.  

Recently, more accurate and newer 
predictive tools like the genetic algorithm 
(GA) and neural network (ANN) are 
applied for predicting and optimization of 
various processes in different products. 
Tavakolipour & Mokhtarian (2012) used 
the ANN model for predicting the pistachio 
nut’s moisture ratio. According to the 

results, the multilayer perceptron (MLP) 
with 7 neurons in the 1st and 2nd hidden 
layers predicted MR ratio with R2 value as 
to 0.994. In addition, Kerdpiboon, Kerr, & 
Devahastin (2006) employed ANN analysis 
for prediction of rehydration and shrinkage 
in the dried carrots on the basis of employed 
inputs of normalized fractal dimension 
analysis of the cell-wall structure and 
moisture content. Mousavi & Javan (2009) 
employed neuro-Taguchi's approach and 
ANN method for simulation of drying 
process of apple. Abbaszadeh, Motevali, 
Khoshtaghaza, & Kazemi (2011) compared 
the thin layer drying equations and neural 
networks so as to predict the drying 
behavior of Elaeagnus angustifolia. To 
achieve online predictions of moisture 
kinetics during sweet potato drying, a 
predictive model was developed by the use 
of the artificial neural network (Singh, 
2011). Erenturk & Erenturk (2007) also 
compared the thin-layer drying process of 
carrot by using ANN and GA approaches. 
They found that the neural network showed 
better drying properties in comparison to 
other techniques (i.e., empirical model and 
GA) (Erenturk & Erenturk, 2007). Also, 
Aghajani, Kashaninejad, Dehghani, & 
Daraei Garmakhany (2012) and Kashiri, 
Daraei Garmakhany, & Dehghani (2012) 
studied the ability of ANN model for 
predicting green malt moisture ratio and 
sorghum soaking modeling, respectively. 
They showed that the ANN model with 
higher R2 was selected as the best model for 
process modeling compared to classical 
models The goals of current study include: 
(1) determining the drying properties of 
tomato under various drying air conditions, 
(2) feasibility evaluation of neural network 
application for predicting tomato moisture 
ratio for momentarily monitoring the drying 
properties; and (3) optimizing the suitability 
of the mathematical model, which describes 
drying properties using genetic algorithm in 
order to increase the model accuracy. 
 
Materials and methods  
Preparation of raw material  
Fresh tomato was prepared from local 



Mokhtarian et al.                                 Predicting the Moisture Ratio of Dried Tomato Slices Uusing …                                                 413 

 

market. The raw fruits were washed and 
kept in a refrigerator temperature at 5 °C. 
The tomatoes had three locular in their 
structure. Fresh tomato was cut in 5±0.1 
mm thickness for experiment. By direct 
heating in a hot oven (Memmert, model 
UNE 400 PA, Scheabach, Germany) at 105 
°C for 48 h based on AOAC (1990) method 
931.04, the primary moisture content (MC) 
was determined. Average primary MC of 
tomatoes was obtained as 92.37±1 (%wet 
basis). Some physical features of fresh 
tomatoes including true density (ρp), 
geometric mean diameter (Dg), surface area 
(S), mean diameter (Da), volume (V) and 
sphericity (Φ) were specified and indicated 
in Table (1) (Mpotokwane, Gaditlhatlhelwe, 
Sebaka, & Jideani, 2008). The following 
equations were used to calculate physical 
properties of fresh tomato. 

(1) 
D =   

(2) 
D = (LWT) .   

(3) 
훷 = ( 	 	 ) .

  
(4) 

S = πD   
(5) 

V =
( √ )

  
 

In the above equations, L, W and T are 
Length (cm), Width (cm) and Thickness 
(cm) respectively.  

 
Table 1. Physical properties of fresh tomato 

Physical properties Present study 

Previous 
study  

(Li, Li, & 
Liu, 2011) 

Moisture (% dry basis) 12.47±0.526 - 
Length (cm) 6.29±0.384 6.07±0.43 
Width (cm) 5.44±0.372 7.38±0.44 
Thickness (cm) 5.14±0.404 7.29±0.56 
Surface area (cm2) 98.80±11.99 148.20±16.62 
Arithmetic mean 
diameter (cm) 5.62±0.329 6.89±0.39 

Geometric mean 
diameter (cm) 5.60±0.335 6.86±0.38 

Unit mass (g) 103.70±19.90 159.60±28.94 
Volume (cm3) 80.61±16.50 168.90±29.89 
Sphericity Φ (%) 89.07±4.18 92.99±2.04 
True density (g/cm3) 1.29±0.112 1.05±0.07 
Data represent means, standard deviations and 
values are the average of three replications. 

Drying experiments 
A tray dryer was used as the hot-air dryer 
in the tests. The tests were done at two 
temperatures (60 and 70 °C). The air 
velocity over drying samples was constant. 
The dryer was fitted to an optimal 
temperature and before experiment 
initiation, it was stabilized for 1 h and half. 
A fan with a steady speed was used in the 
tray to induce air convection inside the 
chamber. A digital balance was used for 
capturing the weight loss readings (AND, 
FX-300 CT, Japan), with interval of 15 
min, with an accuracy of ±0.01 g during 
drying. As when as MC of the samples was 
reached ~0.5±0.12 (d.b.), drying process 
was ended. 
 
Mathematical modeling of drying process 
In order to mathematically model drying 
curves of the tomato slice samples, thin 
layer drying approaches were applied. The 
results of drying curves was fitted with 
four different MR approaches (Table 2). 
New model was selected according to 
previous article (Tavakolipour & 
Mokhtarian, 2012). 

The correlation coefficient (R2) is one 
of the main statistical criteria for selecting 
the best equation. Moreover, the 
effectiveness of fitting was also specified 
by different statistical parameters like 
mean relative deviation modulus P (%), 
root mean square error (RMSE), and 
reduced chi-square (χ2). The R2-value must 
be higher for better fitting, and RMSE & 
χ2, P (%) values must be lower. These 
parameters were calculated as follow: 

(6) 
X =

∑ ( . , ) 									  
(7) 

∑ MR , −MR ,    
(8) 

RMSE = ∑ (MR , −MR , )    
 

Where MRp,i denotes anticipated MR, 
MRe,i denotes experimental MR, z is the 
number of model parameters and N 
denotes the number of observations. 
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Table 2. Results of statistical analysis based on drying kinetic models on thin layer drying of tomato slice and 
constant coefficients of the models during different drying conditions 

Equation Name Temperature 
(°C) χ2 RMSE R2 

Modified Page MR=exp(-(kt)n) 60 0.00074 0.02609 0.9922 
70 0.00021 0.01366 0.9979 

Agh-m MR=exp(-kt/1+k1t) 60 0.00020 0.01382 0.9978 
70 0.00011 0.00996 0.9988 

Thomson MR=exp(t/(a+blnMR) 60 0.00312 0.05365 0.9671 
70 0.00217 0.04398 0.9781 

New model ln(-ln MR)=a+b(ln 
t)+c(ln t)2 

60 0.02344 0.14362 0.7645 
70 0.03474 0.17014 0.6732 

Model Temp. (°C) k (min-1) k1 n a b c 
Modified 

Page 
60 0.007021 - 1.21883 - - - 
70 0.013566 - 1.11068 - - - 

Agh-m 60 0.005424 -0.00134 - - - - 
70 0.012042 -0.00125 - - - - 

Thomson 60 - - - -0.00223 -0.0000261 - 
70 - - - -0.00713 -0.0000544 - 

New model 60 - - - -0.06433 -1.41010 0.2829 
70 - - - -0.06998 -1.22732 0.2800 

 
Calculation of effective diffusion coefficient  
The empirical drying data was collected in 
order to determine diffusivity coefficients 
using Fick’s second diffusion equation. 
The analytical solution presented by Fick’s 
second law implies an unsteady state 
diffusion in an infinite slab by the drying 
process, which is observed in the equation 
(9):  

(9) 
MR = = ∑

( )
exp	(−(2n+ 1)   

 
Where Xt, MR, X0, and Xe denote 

moisture content at t, the moisture ratio 
(dimensionless), primary MC, and 
equilibrium MC (d.b.), respectively. Also, 
L denotes the sample’s half-thickness (m), 
Deff, denotes the effective diffusion 
coefficient (m2/s) and t denotes the drying 
time (min) (Mewa, Okoth, Kunyanga, & 
Rugiri, 2019). 

In case of good approximation, it is 
possible to use the first term equation (9). 
Hence, if n=1 is substituted and taking 
logarithm from both sides of the equation 
(10):  

(10) 
lnMR = ln = ln −   
 

Thus, by plotting lnMR versus time 
(min), effective diffusion coefficient (Deff) 

can be gained. Acording to the equation 
(10), a plot of lnMR vs. time showed a 
straight line with a (α) slope, where:  

(11) 
α =   
 
Color changes 
In order to determine the browning index, 
a modified version of Cernîşev (2010) 
method was used. Using UV–Vis 
spectrophotometer, the extent of browning 
was considered as color change, which was 
measured as absorbance at 420 nm 
(Shimadzo, Model UV-120-02, Japan). For 
the purpose of determining the color, 
firstly, the dried tomatoes were ground into 
powder. Afterward, small amount of 
tomato powder was weighed and mixed 
with a specific amount of distilled water so 
that a uniform sample was obtained. The 
brix of prepared suspension was equal to 
5°. Following the adjustment of the 
suspension, 0.45 μm filter membrane was 
used for filtering the samples, and 4 mL of 
the extract mixed with 10 mL of acetone 
was used and the samples were filtered 
again. Then, some amount of the clear 
extracts was put in the spectrophotometer 
cell, and the absorbance read at 420 nm.   
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Shrinkage 
For determining the shrinkage of dried 
sample, the equation given below was 
used.  

(12) 
%SKG =   

 
Where, V denotes the dried tomato 

volume (cm3), and Vο denotes the fresh 
tomato volume (cm3). Using a slide 
caliper, the thickness and diameter of fresh 
and dried samples were measured for 
calculating the sample volume (Vertex 
model, M502, with 0.01 mm accuracy) 
(Figiel, 2010).  
 
Rehydration ratio 
Rehydration test was conducted based on 
the instruction given by Mozumder et al. 
(2012). For this purpose, almost ten grams 
of dried products were weighted and 
soaked in 100 mL distilled water at 25 oC. 
Afterward, the weight of sample was red in 
intervals between 1 to 8 h. The sample was 
put on the filter paper so that the excessive 
water was absorbed and then the 
rehydrated sample was weighed. This 
procedure was continued until a fix weight 
was achieved. The following equation was 
used for calculating rehydration ratio:  

(13) 
RR =  

Where, Wο denotes dried weight of the 
sample (g) and W denotes the weight of 
rehydrated sample (g). 
 
Artificial neural network (ANN) 
Multilayer perceptron network (MLP) with 
varying architectures was used and trained 
using the empirical data for obtaining the 
best prediction by the neural network 
(Mokhtarian et al., 2014a). For training 
ANN, the back-propagation algorithm was 
utilized. The supervised training technique 
is used by the algorithm where the network 
biases and weights are randomly initialized 
at the start of the training stage. Using a 
gradient descent rule, the error in 
minimization process is obtained. The 
arrangement of the network was based on 1 
output on 2 inputs. Drying time and 
temperature (x1 and x2) were the input 
factors, and MR (y) was chosen as the 
output (Fig. 1). For output and input layers, 
Logarithmic sigmoid (logsig) function was 
selected. This threshold function is 
employed in the engineering modeling and 
problems providing satisfactory results. 

 (14) 
logsig(β) = (1 + e )   

 

 
Fig. 1. A neural network scheme, x1, drying time, x2, drying temperature and y, moisture ratio (MR) 
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Two criteria of root mean square error 
(RMSE) and R2-value were used for 
evaluating the performance of the network 
and the selection of the best topology. The 
computer program SPSS version 17 (2011) 
was used for designing the neural network. 
 
Genetic algorithm 
Genetic algorithm is known as a complex 
optimization approach, which achieves an 
optimal level of a different character set 
through the biological evolution processes 
based on integration and mutation, similar 
to what happens in the genetic. It has a 
successful application in analyzing 
different problems (Katoch, Chauhan, & 
Kumar, 2020). Generally, various 
parameters like number of data, population 
size, and number of generations influence 
the optimization approaches. Through trial 
and error, it is possible to obtain the 
optimal values of these parameters. These 
properties were used for optimization of 
the following empirical data: population 
size was 30, number of generations were 
between 8 to 300, survivors per generation 
were 15 considered, and the number of 
mutations was 2. In order to select the best 
model for optimizing the model 
coefficients, generations 8, 15, 29, 34, 42, 
100, and 300 were considered and their 
impact on the correlation coefficient (R2) 
was studied. 
 
Statistical analysis 
In order to do empirical data analysis, a 
completely randomized design (CRD) was 
used. One-way ANOVA analysis was used 
for determining impact of drying 
temperature using SAS software version 
9.1. The mean-values differences were 
compared using Duncan’s multiple range 
tests at a confidence level of 99% (P<0.01) 
(Abdolshahi, Heydari Majd, Abdollahi, 
Fatemizadeh, & Monjazeb Marvdashti, 
2020; Heydari-Majd, Ghanbarzadeh, 
Shahidi-Noghabi, Abdolshahi, Dahmardeh, 
& Mohammadi, 2020; Salarbashi, 
Tafaghodi, & Heydari-Majd, 2020). The 
experiments were all conducted in 
triplicate. 

Results and discussion  
Data fitting 
In the current study, the drying kinetic 
curves of tomato at two temperatures 
including 60 and 70 oC were fitted in terms 
of statistical parameters: R2, χ2, and RMSE 
by four mono-layer drying models given in 
Table (2).  

Table (2), also indicates the modeling 
results. As observed, the model developed 
by Agh-m showed a higher R2-value and 
the lower RMSE and χ2 values. Therefore, 
according to R2, RMSE, and χ2 values, it 
can be found that the model suggested by 
Agh-m provided the best results compared 
to other models, which indicate the thin-
layer drying properties of tomato slices. 
Moreover, Table (2) represents the 
parameters used in different applied 
models. 

The predicted and empirical data of 
mono-layer drying of tomato for the  
Agh-m was compared in Fig. (2a). As 
observed in the model, MR-values were 
banded along a straight line, suggesting the 
fitness of this model for explaining the 
drying properties of tomato sample. Many 
other authors have also reported similar 
results (Tavakolipour & Mokhtarian, 2012; 
Zarein, Samadi, & Ghobadian, 2015). 

The variation of the drying rate vs. time 
at the various temperatures were showed in 
Fig. (2b). As observed, the drying rate was 
raised by increasing air temperature that 
was in agreement with the results of 
(Mokhtarian et al., 2014a; Mokhtarian, 
Koushki, Bakhshabadi, Askari, 
Garmakhany, & Rashidzadeh, 2014b). 

Table (3) gives the effective moisture 
diffusivity values of tomato sample 
(current work) and other products at 
various temperatures. It is evident that the 
range of effective moisture diffusion is 
between 1.5793E-10 and 1.2829E-09 m2/s. 
In addition, by increasing air-drying 
temperature, moisture diffusivity showed 
an accelerating trend significantly. 
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Fig. 2. (a) Correlation between experimental and predicted moisture ratio by Agh-m undergoing air drying, (b) 
the variation of drying rate vs. drying time at different temperature and (c) Rehydration ratio of dried tomato at 
different temperatures 
 
Table 3. Effective diffusion coefficient of tomato fruit and other products and comparisons of quality properties 
of fresh and dried tomato slices 
Products Temp. (°C) Deff **(m2/s) Reference 
Apricot 55 6.76-12.60×10-10 (Doymaz, 2004b) 
Sweet cherry 60-75 1.54-5.68×10−10 (Doymaz & İsmail, 2011) 
Carrot 50-70 0.77-9.33×10−9 (Doymaz, 2004a) 
Tomato 65-95 0.158-1.283×10−9 Present research 

Quality properties Fresh Dried tomato  
60 °C 70 °C 

Color (A420 nm) 0.199±0.001c 0.381±0.001b 0.542±0.002a 
Shrinkage (%) - 87.354±1.15a 88.803±0.92a 
pH 4.24±0.00a 4.20±0.005b 4.18±0.005c 
Acidity (% citric acid) 0.486±0.00c 0.755±0.01b 0.789±0.009a 
*The same letters in each column indicate not significant effect (P<0.01). 
** This factor was analyzed as experimentally. To calculate this factor, MR data drawn Vs. drying time and Deff 
was obtained from slope of regression line. 
 
Assessment of the Quality properties 
Table (3) indicates some quality features of 
fresh and dried tomatoes. As observed, 
drying temperature significantly influenced 
(P<0.01) the quality features of final 
product, while, there was an exception in 
case of shrinkage. Dried sample showed 
higher shrinkage at 70 °C compared to 
those at 60 °C. This can be attributed to 

differences which had been taken between 
glass transition (GT) and temperature of 
samples at higher drying temperatures. 
Thus, structural mobility of matrix was not 
adequate for supporting the solid material 
and more collapse happened (Castro, 
Mayorga, & Moreno, 2018; Mayor & 
Sereno, 2004). 
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Also, Table (3) presents the evaluation 
of tomato color undergoing drying at 
different air temperatures. The fresh 
tomato slices had a glossy color compared 
to dried ones. It can be seen that the drying 
temperature had a considerable impact 
(P<0.01) on color of dried samples during 
process. Therefore, sample dried at 70 °C 
showed more color changing compared to 
the sample dried at 60 °C (Pu & Sun, 
2017). The non-enzymatic browning 
reaction is probably the main factor for 
degradation of the tomato quality 
parameters during the process of drying 
(Cernîşev, 2010). 

One of the most important features that 
is used for measurement of dried food 
quality is rehydration. Fig. (2c) indicates 
rehydration changes of dried samples 
versus time. According to the results, 
rehydration capacity of sample dried at 60 
oC was higher than the ones dried at 70 oC. 
It was due to high shrinkage of sample 
dried at temperature of 70 oC. Maximum 
rehydration rate was obtained when 
structural and cellular disruptions like 
shrinkage were minimized. Hence, lower 
drying temperatures should be used for 
minimizing shrinkage in order to least 
moisture gradients throughout the product.  
 
Performance of ANN and GA approaches 
The genetic algorithm approach was used 
(i.e., Agh-m) to optimize the best empirical 
model for predicting MR in tomato slice. 
In this model, the following features like 
population size of 100, number of 
generations between 8 to 300, number of 
mutations as 2 and survivors per 
generation as 50 were utilized in order to 
estimate the optimal point. The best 
number of genetic generation (number of 
genetic generations included 0, 8, 29, 42, 
87, 110, 154, 242, and 300 being randomly 
selected) was used in order to optimize the 
model constant coefficients and it was 
specified using trial and error method (Fig. 
3a). 

As observed, R2 value was accompanied 
by increasing trend of genetic generations 

number from zero to 300 (in all 
temperatures) so thatany changes in R2 
values will follow a parabolic curve. As it 
can be seen in Fig. (2c), R2 value 
significantly increased with the increase in 
the number of genetic generations from 
starting point of optimization process to 29 
genetic generations in all drying 
temperatures; while, R2 value increasing 
trend was not the same in the area of 
genetic generation numbers from 29 to 
300. Actually, this part of curve showed 
almost a straight line behavior. In general, 
based on findings, 29 genetic generations 
were reported as the best genetic 
generation for an optimized model constant 
coefficient. Table (4) indicates the values 
of model constant coefficients following 
optimizing with 29 genetic generations (as 
optimized generation). 

ANN was used in the current work for 
predicting the moisture ratio (MR) of dried 
tomato. To this end, a combination of 
neurons and layers with logarithmic 
sigmoid (logsig) was utilized for modeling 
a multi-layer perceptron neural network 
(MLP). The neural network contains 1 and 
2 hidden layers (HL), 2 to 35 neurons were 
randomly chosen and it was estimated that 
the network power could predict MR of 
dried tomato slices. Fig. (3b) contains the 
MLP results with different arrangements 
and results obtained for MLP with 1 and 2 
HL. As it can be observed, the topology of 
2-27-1 (i.e., network with 27 neurons, 2 
inputs in the 1st HL and 1 output) provided 
the best outcome for MR prediction. This 
network had the capacity for predicting 
MR with regression coefficient (R2) as 
0.993. In addition, P (%) and RMSE values 
for MR were calculated as 5.5604 and 
0.18003, respectively. There was a high 
correlation between the findings by 
Tavakolipour & Mokhtarian (2012) and the 
results of the current research.  

The present research findings figured out 
that, genetic algorithm as a non-destructive 
approach is a useful method for optimizing 
the best empirical model in order to do MR 
prediction. Based on findings, this approach 
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showed the capability of MR prediction in 
dried tomato slices with high accuracy by 
slight modification of Aghbashlo et al 
(Agh-m) constant coefficient (Table 4). The 
accuracy order of models from high to low 
was as follow: GA>Agh-m>ANN (Table 
4). Erenturk & Erenturk (2007) reported 
similar results concerning mono-layer 
drying of apricot. They used GA and NNA 
approaches for prediction of moisture 
content and compared results obtained from 
these methods (ANN and GA) with the best 
predictive model (i.e., Modified Page) 

(Erenturk & Erenturk, 2007). According to 
their results, ANN showed the best 
accordance to predicting the moisture 
content of dried apricot (Aktaş, Şevik, 
Özdemir, & Gönen, 2015).  

Fig. (3c) indicates the diagram of 
experimental values versus the predicted 
values for the GA approach. As data were 
located randomly around the regression 
line; therefore, the genetic algorithm chould 
be evaluated accurately for prediction of 
MR of dried tomato slice. 

 

 
Fig. 3. (a) Evaluation of the effect of increasing the genetic generation number on the variation of R2 value to 
optimize the empirical model, (b) ANN results of dried tomato slices to predict MR accompanied by logsig 
activation function and (c) predicted and experimental values of the GA approach for predicting MR 
 
Table 4. The constant coefficient of Agh-m with slight amendment 

Temperature (°C) Constants 
k (min-1) k1 R2 

Dried at 60 °C 0.0052515 -0.00138 0.99957 
Dried at 70 °C 0.0114790 -0.00125 0.99975 
Method RMSE P (%) R2 
Agh-m 0.05278 0.9911 0.9983 
Agh-m optimized by means GA 0.10243 1.2227 0.9987 
MLP model (logsig activation function) 0.18003 5.5604 0.9930 
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Conclusions  
The two models derived from biological 
systems (neural networks and genetic 
algorithms) were used to predict the MR of 
tomato slices during drying process. The 
comparison was made between obtained 
results and the empirical model results. 
Among four considered mathematical 
drying kinetic models, the model proposed 
by Agh-m was found to be the most 
appropriate for predicting drying curve of 
tomato slices. According to the research 
findings, all models were reported suitable 
for prediction of MR and minimum 
correlation coefficients (R2=0.993) in dried 
tomato. Typically, the results suggest that 
the GA approach had higher ability for 
predicting the MR of dried tomatoes 

compared to other ones. As a result, the 
GA as the best model was able to estimate 
moisture ratio of dried tomato using 
genetic generation 29 (R2=0.9987). 
Additionally, considering the results, it can 
be found that neural network with 27 
neurons in the HL was able to predict MR 
of dried tomato (R2=0.993). Thus, 
seemingly the presentation and application 
of the advanced approaches as well as 
novel algorithms can decrease trial and 
error steps through  introducing new 
methods for predicting the industrial 
parameters. 
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  چکیده
محصول  تیفیکنترل ک هاي سیستم بهبود يبرا، ابزار مفیدي کردن خشک يها یمنحن يساز و مدل یاضیساز ر هیاستفاده از شبامروزه، 

و  يکار فاکتورهايو  طیشرا يساز نهیه، بندیآاعوامل موجود در فر ۀمطالع يها معمولاً برا روش نیا مختلف است. طیدر شرا یینها
 فرنگی هگوج هاي ورقهنسبت رطوبت  ینیب شیپ منظور بهحاضر  ۀدر مقال شود. یشدن محصول اعمال م خشک کینتیس ینیب شیپ

 4تدا منظور، اب نیا يبرا استفاده شده است. )GA( کیژنت تمیو الگور )ANN( یمصنوع یعصب ۀاز دو ابزار هوشمند ازجمله شبک شده خشک
 یمنحنبراي مدل برازش  نیسپس بهتر .داده شدندمطابقت  یتجرب يها با داده سپسگرفته شد و ها  هسایر مطالعاز  یاضیمدل ر
 منظور به یخوب اریعملکرد بس، شده است شنهادیکه توسط آغباشلو و همکاران پ مدلی، جیطبق نتا انتخاب شد. یفرنگ کردن گوجه خشک

 یمدل تجرب نیبهتر يساز نهیبه يبرا کیژنت تمی، از الگورنیبر ا علاوه شده نشان داد. خشک فرنگی گوجه هاي قهورنسبت رطوبت  ینیب شیپ
 نتایج شد. سهیمقا کیژنت تمیو الگور یمصنوع یعصب ۀشبک يها شده در مدل مشاهده جیبا نتااین تحقیق  جی، نتاتیدرنها استفاده شد.

 )R2ی (همبستگ بیخشک با ضر فرنگی نسبت رطوبت گوجه ینیب شیپ منظور بهرا  يدقت بالاتر کیژنت تمینشان داد که مدل الگور
  دهد. یارائه م 9987/0

 یفرنگ گوجه ۀورق، یمصنوع یعصب ۀشبک ،نازك یۀشدن لا خشک ،کیژنت تمیالگور کلیدي: هاي واژه
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