نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه میکروب‌شناسی، دانشکده علوم، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

2 استادیار، گروه میکروب‌شناسی، دانشکده علوم، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

3 دانشیار، گروه میکروب‌شناسی، واحد تنکابن، دانشگاه آزاد اسلامی، تنکابن، ایران

چکیده

آرکوباکتر بوتزلری درارتباط‌با انتریت،‌ کرامپ‌شکمی، باکتریمی، آپاندیسیت در انسان و انتریت و درد شکمی ‌در حیوانات شناخته می‌شود. این باکتری به‌عنوان خطرناک‌ترین گونه برای سلامت انسان براساس شاخص‌های کمیسیون میکروبیولوژی غذایی اعلام شده است. همچنین به‌عنوان پاتوژن مهم زئونوتیک معرفی شده است. هدف از این مطالعه جداسازی، شناسایی آرکوباکتر بوتزلری براساس ژن‌های بیماری‌زا (ciaB, mviN, tlyA) در فصول مختلف بود. ازاین‌رو، 238 نمونه از پساب کشتارگاه مرغ شهرستان تنکابن جمع‌آوری شد. سپس کلنی‌های مشکوک با استفاده از تست بیوشیمیایی جداسازی و شناسایی شدند و از تکنیک واکنش زنجیره‌ای پلی‌مراز (PCR) جهت تأیید آرکوباکتر‌ها استفاده شد. از 42 جدایۀ آرکوباکتر بوتزلری، ژن‌های بیماری‌زا در 15 جدایه ارزیابی شدند. نتایج به‌دست‌آمده نشان داد که ژن ciaB در 13 سویه با فراوانی 30/9 درصد، ژن mviN در 11 نمونه با فراوانی 26/2 درصد و ژن tlyA در 9 نمونه با فراوانی 21/4 درصد وجود دارد. همچنین نتایج نشان داد که بالاترین میزان جداسازی آرکوباکتر بوتزلری 4/8 درصد در بهار و کمترین میزان آن 1/2 درصد در زمستان بود. همچنین نتایج نشان داد که بیشترین میزان جداسازی آرکوباکتر بوتزلری در فصل بهار با فراوانی 8/4 درصد و کمترین میزان جداسازی در فصل زمستان با فراوانی 1/2 درصد بوده است.

کلیدواژه‌ها

Atabay, H., & Corry, J. (1997). The prevalence of campylobacters and arcobacters in broiler chickens. Journal of Applied Microbiology, 83(5), 619-626.
Badilla-Ramirez, Y., Fallas-Padilla, K. L., Fernandez-Jaramillo, H., & Arias-Echandi, M. L. (2016). Survival capacity of Arcobacter butzleri inoculated in poultry meat at two different refrigeration temperatures. Revista do Instituto de Medicina Tropical de São Paulo, 58. doi:https://doi.org/10.1590/S1678-9946201658022
Cervenka, L., Kristlova, J., Peskova, I., Vytrasova, J., Pejchalova, M., & Brozkova, I. (2008). Persistence of Arcobacter butzleri CCUG 30484 on plastic, stainless steel and glass surfaces. Brazilian Journal of Microbiology, 39(3), 517-520. doi:https://doi.org/10.1590/S1517-83822008000300021
Chieffi, D., Fanelli, F., & Fusco, V. (2020). Arcobacter butzleri: Up‐to‐date taxonomy, ecology, and pathogenicity of an emerging pathogen. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2071-2109. doi:https://doi.org/10.1111/1541-4337.12577
Collado, L., & Figueras, M. J. (2011). Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clinical microbiology reviews, 24(1), 174-192. doi:https://doi.org/10.1128/CMR.00034-10
Collado, L., Guarro, J., & Figueras, M. J. (2009). Prevalence of Arcobacter in meat and shellfish. Journal of food protection, 72(5), 1102-1106. doi:https://doi.org/10.4315/0362-028X-72.5.1102
Collado, L., Jara, R., Vásquez, N., & Telsaint, C. (2014). Antimicrobial resistance and virulence genes of Arcobacter isolates recovered from edible bivalve molluscs. Food Control, 46, 508-512. doi:https://doi.org/10.1016/j.foodcont.2014.06.013
Dasti, J. I., Tareen, A. M., Lugert, R., Zautner, A. E., & Groß, U. (2010). Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. International Journal of Medical Microbiology, 300(4), 205-211. doi:https://doi.org/10.1016/j.ijmm.2009.07.002
Douidah, L., De Zutter, L., Baré, J., De Vos, P., Vandamme, P., Vandenberg, O., . . . Houf, K. (2012). Occurrence of putative virulence genes in Arcobacter species isolated from humans and animals. Journal of clinical microbiology, 50(3), 735-741. doi:https://doi.org/10.1128/JCM.05872-11
Eifert, J., Castle, R., Pierson, F., Larsen, C., & Hackney, C. (2003). Comparison of sampling techniques for detection of Arcobacter butzleri from chickens. Poultry science, 82(12), 1898-1902. doi:https://doi.org/10.1093/ps/82.12.1898
Ellis, W., Neill, S., O'brien, J., Ferguson, H., & Hanna, J. (1977). Isolation of Spirillum/Vibrio-like organisms from bovine fetuses. Veterinary Record, 100(21), 451-452. doi:https://doi.org/10.1136/vr.100.21.451
Ferreira, S., Queiroz, J. A., Oleastro, M., & Domingues, F. C. (2016). Insights in the pathogenesis and resistance of Arcobacter: a review. Critical reviews in microbiology, 42(3), 364-383. doi:https://doi.org/10.3109/1040841X.2014.954523
Figueras, M., Levican, A., Pujol, I., Ballester, F., Quilez, M. R., & Gomez-Bertomeu, F. (2014). A severe case of persistent diarrhoea associated with Arcobacter cryaerophilus but attributed to Campylobacter sp. and a review of the clinical incidence of Arcobacter spp. New microbes and new infections, 2(2), 31-37. doi:https://doi.org/10.1002/2052-2975.35
Ghaju Shrestha, R., Tanaka, Y., Sherchand, J. B., & Haramoto, E. (2019). Identification of 16S rRNA and Virulence-Associated Genes of Arcobacter in Water Samples in the Kathmandu Valley, Nepal. Pathogens, 8(3), 110. doi:https://doi.org/10.3390/pathogens8030110
Ghane, M., Moein, F. G., & Massoudian, S. (2012). The first isolation of Campylobacter jejuni. Advanced Studies in Biology, 4(9), 407-418.
Girbau, C., Guerra, C., Martínez-Malaxetxebarria, I., Alonso, R., & Fernández-Astorga, A. (2015). Prevalence of ten putative virulence genes in the emerging foodborne pathogen Arcobacter isolated from food products. Food microbiology, 52, 146-149. doi:https://doi.org/10.1016/j.fm.2015.07.015
Gobbi, D. D., Spindola, M. G., Moreno, L. Z., Matajira, C. E., Oliveira, M. G., Paixão, R., . . . Moreno, A. M. (2018). Isolation and molecular characterization of Arcobacter butzleri and Arcobacter cryaerophilus from the pork production chain in Brazil. Pesquisa Veterinária Brasileira, 38(3), 393-399. doi:http://dx.doi.org/10.1590/1678-5150-pvb-4709
Grant, K. A., Belandia, I. U., Dekker, N., Richardson, P. T., & Park, S. F. (1997). Molecular characterization of pldA, the structural gene for a phospholipase A from Campylobacter coli, and its contribution to cell-associated hemolysis. Infection and immunity, 65(4), 1172-1180.
Ho, H. T., Lipman, L. J., Hendriks, H. G., Tooten, P. C., Ultee, T., & Gaastra, W. (2007). Interaction of Arcobacter spp. with human and porcine intestinal epithelial cells. FEMS Immunology & Medical Microbiology, 50(1), 51-58. doi:https://doi.org/10.1111/j.1574-695X.2007.00230.x
Houf, K., De Zutter, L., Van Hoof, J., & Vandamme, P. (2002). Assessment of the genetic diversity among arcobacters isolated from poultry products by using two PCR-based typing methods. Applied and environmental microbiology, 68(5), 2172-2178. doi:https://doi.org/10.1128/AEM.68.5.2172-2178.2002
Inoue, A., Murata, Y., Takahashi, H., Tsuji, N., Fujisaki, S., & Kato, J.-i. (2008). Involvement of an essential gene, mviN, in murein synthesis in Escherichia coli. Journal of bacteriology, 190(21), 7298-7301. doi:https://doi.org/10.1128/JB.00551-08
Jribi, H., Sellami, H., AMOR, S. B., Ducournau, A., Sifré, E., Benejat, L., . . . Gdoura, R. (2020). Occurrence and Antibiotic Resistance of Arcobacter Species Isolates from Poultry in Tunisia. Journal of food protection, 83(12), 2080-2086. doi:https://doi.org/10.4315/JFP-20-056
Jyothsna, T. S., Rahul, K., Ramaprasad, E., Sasikala, C., & Ramana, C. V. (2013). Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. International journal of systematic and evolutionary microbiology, 63(12), 4619-4625.
Karadas, G., Sharbati, S., Hänel, I., Messelhäußer, U., Glocker, E., Alter, T., & Gölz, G. (2013). Presence of virulence genes, adhesion and invasion of A rcobacter butzleri. Journal of Applied Microbiology, 115(2), 583-590. doi:https://doi.org/10.1111/jam.12245
Levican, A., Alkeskas, A., Günter, C., Forsythe, S. J., & Figueras, M. J. (2013). Adherence to and invasion of human intestinal cells by Arcobacter species and their virulence genotypes. Applied and environmental microbiology, 79(16), 4951-4957. doi:https://doi.org/10.1128/AEM.01073-13
Levican, A., Collado, L., Yustes, C., Aguilar, C., & Figueras, M. J. (2014). Higher water temperature and incubation under aerobic and microaerobic conditions increase the recovery and diversity of Arcobacter spp. from shellfish. Applied and environmental microbiology, 80(1), 385-391. doi:https://doi.org/10.1128/AEM.03014-13
Mey, A. R., Wyckoff, E. E., Oglesby, A. G., Rab, E., Taylor, R. K., & Payne, S. M. (2002). Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: IrgA is not required for virulence. Infection and immunity, 70(7), 3419-3426. doi:https://doi.org/10.1128/IAI.70.7.3419-3426.2002
Miller, W. G., Parker, C. T., Rubenfield, M., Mendz, G. L., Wösten, M. M., Ussery, D. W., . . . Wang, G. (2007). The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri. PloS one, 2(12), e1358. doi:https://doi.org/10.1371/journal.pone.0001358
Rashid, R. A., Tarr, P. I., & Moseley, S. L. (2006). Expression of the Escherichia coli IrgA homolog adhesin is regulated by the ferric uptake regulation protein. Microbial Pathogenesis, 41(6), 207-217. doi:https://doi.org/10.1016/j.micpath.2006.07.006
Rasmussen, L. H., Kjeldgaard, J., Christensen, J. P., & Ingmer, H. (2013). Multilocus sequence typing and biocide tolerance of Arcobacter butzleri from Danish broiler carcasses. BMC research notes, 6(1), 1-7. doi:https://doi.org/10.1186/1756-0500-6-322
Rojas, C. M., Ham, J. H., Deng, W.-L., Doyle, J. J., & Collmer, A. (2002). HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proceedings of the National Academy of Sciences, 99(20), 13142-13147.
Šilha, D., Vacková, B., & Šilhová, L. (2018). Occurrence of virulence–associated genes in Arcobacter butzleri and Arcobacter cryaerophilus isolates within the Czech Republic. Acta Biochimica Polonica.
Slater, F. R., Bailey, M. J., Tett, A. J., & Turner, S. L. (2008). Progress towards understanding the fate of plasmids in bacterial communities. FEMS microbiology ecology, 66(1), 3-13. doi:https://doi.org/10.1111/j.1574-6941.2008.00505.x
Snelling, W., Matsuda, M., Moore, J., & Dooley, J. (2006). Under the microscope: Arcobacter. Letters in applied microbiology, 42(1), 7-14. doi:https://doi.org/10.1111/j.1472-765X.2005.01841.x
Tabatabaei, M., Aski, H. S., Shayegh, H., & Khoshbakht, R. (2014). Occurrence of six virulence-associated genes in Arcobacter species isolated from various sources in Shiraz, Southern Iran. Microbial Pathogenesis, 66, 1-4. doi:https://doi.org/10.1016/j.micpath.2013.10.003
Tompkin, R. B. (2002). Microbiological testing in food safety management (Vol. 7): Springer Science & Business Media.
Vandenberg, O., Dediste, A., Houf, K., Ibekwem, S., Souayah, H., Cadranel, S., . . . Vandamme, P. (2004). Arcobacter species in humans. Emerging infectious diseases, 10(10), 1863-1867. doi:https://doi.org/10.3201/eid1010.040241
Waite, D. W., Vanwonterghem, I., Rinke, C., Parks, D. H., Zhang, Y., Takai, K., . . . Hanson, T. E. (2017). Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Frontiers in microbiology, 8, 682. doi:https://doi.org/10.3389/fmicb.2017.00682
Wesley, I. V., & Miller, W. G. (2010). Arcobacter: an opportunistic human food‐borne pathogen? In W. M. S. M. L. G. J. M. Hughes (Ed.), Emerging infections 9 (pp. 185-212): Wiley Online Library.
Wilson, D. L., Abner, S. R., Newman, T. C., Mansfield, L. S., & Linz, J. E. (2000). Identification of ciprofloxacin-resistantcampylobacter jejuni by use of a fluorogenic PCR assay. Journal of clinical microbiology, 38(11), 3971-3978. doi:https://doi.org/10.1128/JCM.38.11.3971-3978.2000
Zhu, M., Valdebenito, M., Winkelmann, G., & Hantke, K. (2005). Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology, 151(7), 2363-2372.