Evaluation of Caffeine Release from Hydrogel Colloidosome under Simulated oral Condition and Instrumental Analysis of the Microcapsule

Document Type : Original Paper

Authors

1 PhD. Graduate, Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

2 Professor, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran

3 Assistant Professor, Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran

Abstract

In this research hydrogel-based colloidosome with shell of CaCO3 microparticles was used in order to encapsulate caffeine as a model flavor compound. When the CaCO3 particles were dispersed in sunflower oil and then water in oil emulsion was prepared, with adding D-gluconic acid δ-lactone, water droplets containing alginate slowly gelate with outer layer of CaCO3 particles in micrometer hydrogels in the size of a few 10 µm without coagulation. CaCO3 microparticles act as both cross-linker for the alginate and stabilizer of water in oil emulsion. After leaving for 48 h, the hydrogel colloidosomes sank to the bottom of the container due to gravity. The results of infrared spectroscopy showed that indicative peaks of caffeine functional groups appeared in the loaded colloidosome sample spectrum and shifted its position. The results of calorimetric tests showed that the difference between the melting point of colloidosome samples with varying amounts of calcium carbonate microparticles in their formulas are linked. The results of the X-ray diffraction test showed a change in the crystalline degree of caffeine. After 5 h, the colloidosome sample, continued the caffeine release in water up to 55% maximally, while using mouth conditions for this sample, release of the loaded caffeine increased 33%. Generally, the results of instrumental analysis and release test showed that caffeine in the hydrogel colloidosome was well encapsulated within the alginate hydrogel network and have proper release under simulated oral condition.

Keywords

Anbinder, P. S., Deladino, L., Navarro, A. S. d. R., Amalvy, J., & Martino, M. N. (2011). Yerba mate extract encapsulation with alginate and chitosan systems: interactions between active compound encapsulation polymers. Journal of Encapsulation and Adsorption Sciences, 1, 80-87. doi:http://dx.doi.org/10.4236/jeas.2011.14011
Ca yre, O. J., Noble, P. F., & Paunov, V. N. (2004). Fabrication of novel colloidosome microcapsules with gelled aqueous cores. Journal of Materials Chemistry, 14(22), 3351-3355. doi:https://doi.org/10.1039/B411359D
Chorilli, M., Calixto, G., Rimério, T. C., & Scarpa, M. V. (2013). Caffeine encapsulated in small unilamellar liposomes: characerization and in vitro release profile. Journal of dispersion science and technology, 34(10), 1465-1470. doi:https://doi.org/10.1080/01932691.2012.739535
Córdoba, A. L., Deladino, L., & Martino, M. (2013). Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohydrate Polymers, 95(1), 315-323. doi:https://doi.org/10.1016/j.carbpol.2013.03.019
Cunha, D., Ben Yahia, M., Hall, S., Miller, S. R., Chevreau, H., Elkaïm, E., . . . Serre, C. (2013). Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks. Chemistry of Materials, 25(14), 2767-2776. doi:https://doi.org/10.1021/cm400798p
Dinsmore, A., Hsu, M. F., Nikolaides, M., Marquez, M., Bausch, A., & Weitz, D. (2002). Colloidosomes: selectively permeable capsules composed of colloidal particles. Science, 298(5595), 1006-1009. doi:https://doi.org/10.1126/science.1074868
Hwang, Y.-J., Oh, C., & Oh, S.-G. (2005). Controlled release of retinol from silica particles prepared in O/W/O emulsion: The effects of surfactants and polymers. Journal of Controlled Release, 106(3), 339-349. doi:http://dx.doi.org/10.1016/j.jconrel.2005.05.007
Karaman, S., & Kayacıer, A. (2009). Rheological properties of salep drink flavored with cocoa powder. Scientific Works of the University of Food Technologies-Plovdiv, 56(1), 175-178.
Lee, D., & Weitz, D. A. (2008). Double emulsion‐templated nanoparticle colloidosomes with selective permeability. Advanced Materials, 20(18), 3498-3503. doi:https://doi.org/10.1002/adma.200800918
Liédana, N., Marín, E., Téllez, C., & Coronas, J. (2013). One-step encapsulation of caffeine in SBA-15 type and non-ordered silicas. Chemical engineering journal, 223, 714-721. doi:https://doi.org/10.1016/j.cej.2013.03.041
Litzenberger, A. L. (2010). A microfluidic method to measure diffusion in hydrogels. (Master's thesis), Bucknell University. Retrieved from https://digitalcommons.bucknell.edu/masters_theses/36/  
Liu, H., Wang, C., Gao, Q., Liu, X., & Tong, Z. (2008). Fabrication of novel core-shell hybrid alginate hydrogel beads. International journal of pharmaceutics, 351(1-2), 104-112. doi:https://doi.org/10.1016/j.ijpharm.2007.09.019
Madadlou, A., Jaberipour, S., & Eskandari, M. H. (2014). Nanoparticulation of enzymatically cross-linked whey proteins to encapsulate caffeine via microemulsification/heat gelation procedure. LWT-Food Science and Technology, 57(2), 725-730. doi:https://doi.org/10.1016/j.lwt.2014.02.041
Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release–a review. International journal of food science & technology, 41(1), 1-21. doi:https://doi.org/10.1111/j.1365-2621.2005.00980.x
Matoušková, P., Patočková, K., Doskočil, L., & Márová, I. (2012). Encapsulation of caffeine into organic micro-and nanoparticles. Paper presented at the NANOCON 2012–2nd. International Conference on Nanotechnology. Conference Proceedings.
McClements, D. J., Decker, E. A., & Weiss, J. (2007). Emulsion‐based delivery systems for lipophilic bioactive components. Journal of food science, 72(8), R109-R124. doi:https://doi.org/10.1111/j.1750-3841.2007.00507.x
Moffatt, A. C. (1986). Clarke's Isolation and Identification of Drugs (2nd ed.): Pharmaceutical Press.
Mohebbi, M., Varidi, M., Noshad, M., & Khalilian Movahhed, M. (2019). Evaluation of the Release of Microcapsulated Vanillin under Simulated Oral Conditions. Research and Innovation in Food Science and Technology, 8(2), 111-124. doi:https://doi.org/10.22101/JRIFST.2019.07.22.821 (in Persian)
Olukman, M., Sanli, O., & Solak, E. K. (2012). Release of anticancer drug 5-Fluorouracil from different ionically crosslinked alginate beads. Journal of Biomaterials and Nanobiotechnology, 3(04), 469-479. doi:https://dx.doi.org/10.4236/jbnb.012.34048
Paseta, L., Potier, G., Abbott, S., & Coronas, J. (2015). Using Hansen solubility parameters to study the encapsulation of caffeine in MOFs. Organic & biomolecular chemistry, 13(6), 1724-1731. doi:https://doi.org/10.1039/C4OB01898B
Pothakamury, U. R., & Barbosa-Cánovas, G. V. (1995). Fundamental aspects of controlled release in foods. Trends in food science & technology, 6(12), 397-406. doi:https://doi.org/10.1016/S0924-2244(00)89218-3
Prestidge, C. A., & Simovic, S. (2006). Nanoparticle encapsulation of emulsion droplets. International journal of pharmaceutics, 324(1), 92-100. doi:https://doi.org/10.1016/j.ijpharm.2006.06.044
Rajendran, A., & Basu, S. K. (2009). Alginate-chitosan particulate system for sustained release of nimodipine. Tropical journal of pharmaceutical research, 8(5), 433-440. doi:https://doi.org/10.4314/tjpr.v8i5.48087
Roberts, D., Pollien, P., & Milo, C. (2000). Solid-phase microextraction method development for headspace analysis of volatile flavor compounds. Journal of Agricultural and Food Chemistry, 48(6), 2430-2437. doi:https://doi.org/10.1021/jf991116l
Rosenberg, R. T. (2010). Controlling transport using surface porosity in colloidosomes (Vol. 71).
Rosenberg, R. T., & Dan, N. (2011). Self-Assembly of colloidosome shells on drug-containing hydrogels. Journal of Biomaterials and Nanobiotechnology, 2(01), 1-7. doi:https://doi.org/10.4236/jbnb.2011.21001
Rosenberg, R. T., & Dan, N. R. (2010). Controlling surface porosity and release from hydrogels using a colloidal particle coating. Journal of colloid and interface science, 349(2), 498-504. doi:https://doi.org/10.1016/j.jcis.2010.05.095
Rossier-Miranda, F., Schroën, C., & Boom, R. (2009). Colloidosomes: Versatile microcapsules in perspective. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 343(1-3), 43-49. doi:https://doi.org/10.1016/j.colsurfa.2009.01.027
Sacanna, S., Kegel, W., & Philipse, A. (2007). Spontaneous oil-in-water emulsification induced by charge-stabilized dispersions of various inorganic colloids. Langmuir, 23(21), 10486-10492. doi:https://doi.org/10.1021/la701311b
Sarmento, B., Ferreira, D., Veiga, F., & Ribeiro, A. (2006). Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers, 66(1), 1-7. doi:https://doi.org/10.1016/j.carbpol.2006.02.008
Shahidi Noghabi, M., & Molaveisi, M. (2020). Using Arabic Gum, Maltodextrin and Inulin for Wall Compounds Microencapsulation and Rapid Release of the Bioactive Compounds from Cardamom Essential Oil in Saliva. Research and Innovation in Food Science and Technology, 9(1), 57-72. doi:https://doi.org/10.22101/JRIFST.2019.09.22.e1071 (in Persian)
Steffe, J. F. (1996). Rheological methods in food process engineering: Freeman press.
Thompson, K. L., Armes, S., Howse, J., Ebbens, S., Ahmad, I., Zaidi, J., . . . Burdis, J. (2010). Covalently cross-linked colloidosomes. Macromolecules, 43(24), 10466-10474. doi:https://doi.org/10.1021/ma102499k
Tønnesen, H. H., & Karlsen, J. (2002). Alginate in drug delivery systems. Drug development and industrial pharmacy, 28(6), 621-630. doi:https://doi.org/10.1081/DDC-120003853
Tripathi, R., & Mishra, B. (2012). Development and evaluation of sodium alginate–polyacrylamide graft–co-polymer-based stomach targeted hydrogels of famotidine. Aaps Pharmscitech, 13(4), 1091-1102. doi:https://doi.org/10.1208/s12249-012-9824-1
Wang, C., He, C., Tong, Z., Liu, X., Ren, B., & Zeng, F. (2006). Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. International journal of pharmaceutics, 308(1-2), 160-167. doi:https://doi.org/10.1016/j.ijpharm.2005.11.004
Wang, H., Zhu, X., Tsarkova, L., Pich, A., & Möller, M. (2011). All-silica colloidosomes with a particle-bilayer shell. Acs Nano, 5(5), 3937-3942. doi:https://doi.org/10.1021/nn200436s
Wang, J., Liu, G., Wang, L., Li, C., Xu, J., & Sun, D. (2010). Synergistic stabilization of emulsions by poly (oxypropylene) diamine and Laponite particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 353(2-3), 117-124. doi:https://doi.org/10.1016/j.colsurfa.2009.11.002
William, K. (1996). Organic spectroscopy (3rd ed.). Hong Kong: Macmilliam.
Zarzycki, R., Modrzejewska, Z., & Nawrotek, K. (2010). Drug release from hydrogel matrices. Ecological Chemistry and Engineering S, 17(2), 117-136.
Zhao, Y. (2013). Engineering of Barrier Properties of Colloidosome Interface to Reduce Oxidation and Control the Release of Encapsulants. (Master's thesis), Drexel University. Retrieved from http://hdl.handle.net/1860/4260 
Zuidam, N. J., Nedovic, . (2010). Encapsulation Technologies for Active Food Ingredients and Food Processing. 1nd ed .Springer
CAPTCHA Image
Volume 10, Issue 2
September 2021
Pages 141-154
  • Receive Date: 22 December 2020
  • Revise Date: 14 February 2021
  • Accept Date: 25 March 2021