Effect of Heat Stress on the Resistance of two Spore Forming Bacillus Species in the Gastrointestinal Tract Simulation Model and their Probiotic Properties

Document Type : Original Paper


Department of Food Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran


In recent years, the application of spore-forming bacteria in probiotic food supplements and medicine have become more interesting due to their stability in stressful condition of production line and gut environment. In the current study, the resistance of Bacillus coagulans and Bacillus subtilis in response to heat stress and simulated gastrointestinal tract was investigated. Moreover, the aggregation and hydrophobicity of cell surface of these strains were evaluated. The results showed a survival rate of more than 80% for both species after enduring heat stress and undergoing simulated gastrointestinal conditions. In addition, Bacillus coagulans showed a higher autoaggregation and coaggregation ability compared to Bacillus subtilis. In addition, both probiotic species presented a high tendency toward adhering to the hydrocarbon solvents like chloroform and ethyl acetate. This study was a continuation of previous studies conducted with the aim of developing and optimizing functional edible coating for the production of probiotic rock candy (Nabat) using spore-forming probiotic bacillus, to ensure the survival and effectiveness of the strains.


Adibpour, N., Hosseininezhad, M., & Pahlevanlo, A. (2019). Application of spore-forming probiotic Bacillus in the production of Nabat-A new functional sweetener. LWT, 113, 108277. doi:https://doi.org/10.1016/j.lwt.2019.108277
Adibpour, N., Hosseininezhad, M., & Pahlevanlo, A. (2020). Optimization of probiotic edible coating formulation and evaluation of physical and textural properties for rock candy coating. Food Science and Technology, 17(100), 103-115.  (in Persian)
Adibpour, N., Hosseininezhad, M., Pahlevanlo, A., & Hussain, M. A. (2019). A review on Bacillus coagulans as a Spore-Forming Probiotic. Applied Food Biotechnology, 6(2), 91-100. doi:https://dx.doi.org/10.22037/afb.v6i2.23958
AlGburi, A., Volski, A., Cugini, C., Walsh, E. M., Chistyakov, V. A., Mazanko, M. S., . . . Chikindas, M. L. (2016). Safety properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Advances in Microbiology, 6(6), 432-452. doi:https://doi.org/10.4236/aim.2016.66043
Cartman, S. T., La Ragione, R. M., & Woodward, M. J. (2008). Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Applied and Environmental Microbiology, 74(16), 5254-5258. doi:https://doi.org/10.1128/AEM.00580-08
Casula, G., & Cutting, S. M. (2002). Bacillus probiotics: spore germination in the gastrointestinal tract. Appl. Environ. Microbiol., 68(5), 2344-2352. doi:https://doi.org/10.1128/AEM.68.5.2344-2352.2002
Cutting, S. M. (2011). Bacillus probiotics. Food microbiology, 28(2), 214-220. doi:https://doi.org/10.1016/j.fm.2010.03.007
do Carmo, F. L., Rabah, H., De Oliveira Carvalho, R. D., Gaucher, F., Cordeiro, B. F., da Silva, S. H., . . . Jan, G. (2018). Extractable bacterial surface proteins in probiotic–host interaction. Frontiers in Microbiology, 9, 645. doi:https://doi.org/10.3389/fmicb.2018.00645
FAO/WHO, J. (2002). Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food London. Ontario, Canada.
Fexby, S., Bjarnsholt, T., Jensen, P. Ø., Roos, V., Høiby, N., Givskov, M., & Klemm, P. (2007). Biological Trojan horse: antigen 43 provides specific bacterial uptake and survival in human neutrophils. Infection and immunity, 75(1), 30-34. doi:https://doi.org/10.1128/IAI.01117-06
Haldar, L., & Gandhi, D. N. (2016). Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Veterinary World, 9(7), 766-772. doi:https://doi.org/10.14202/vetworld.2016.766-772
Hoa, T. T., Isticato, R., Baccigalupi, L., Ricca, E., Van, P. H., & Cutting, S. M. (2001). Fate and dissemination of Bacillus subtilis spores in a murine model. Appl. Environ. Microbiol., 67(9), 3819-3823. doi:https://doi.org/10.1128/AEM.67.9.3819-3823.2001
Hosseini Nezhad, M., Hussain, M. A., & Britz, M. L. (2015). Stress responses in probiotic Lactobacillus casei. Crit Rev Food Sci Nutr, 55(6), 740-749. doi:https://doi.org/10.1080/10408398.2012.675601
Jeon, H.-L., Lee, N.-K., Yang, S.-J., Kim, W.-S., & Paik, H.-D. (2017). Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food science and biotechnology, 26(6), 1641-1648. doi:https://doi.org/10.1007/s10068-017-0148-5
Jeon, H.-L., Yang, S.-J., Son, S.-H., Kim, W.-S., Lee, N.-K., & Paik, H.-D. (2018). Evaluation of probiotic Bacillus subtilis P229 isolated from cheonggukjang and its application in soybean fermentation. LWT, 97, 94-99. doi:https://doi.org/10.1016/j.lwt.2018.06.054
Keller, D., Verbruggen, S., Cash, H., Farmer, S., & Venema, K. (2019). Spores of Bacillus coagulans GBI-30, 6086 show high germination, survival and enzyme activity in a dynamic, computer-controlled in vitro model of the gastrointestinal tract. Beneficial microbes, 10(1), 77-87. doi:https://doi.org/10.3920/BM2018.0037
Kragh, K. N., Hutchison, J. B., Melaugh, G., Rodesney, C., Roberts, A. E., Irie, Y., . . . Gordon, V. (2016). Role of multicellular aggregates in biofilm formation. MBio, 7(2), e00237-00216. doi:https://doi.org/10.1128/mBio.00237-16
Krasowska, A., & Sigler, K. (2014). How microorganisms use hydrophobicity and what does this mean for human needs? Frontiers in cellular and infection microbiology, 4, 112. doi:https://doi.org/10.3389/fcimb.2014.00112
Majeed, M., Majeed, S., Nagabhushanam, K., Arumugam, S., Beede, K., & Ali, F. (2019). Evaluation of probiotic Bacillus coagulans MTCC 5856 viability after tea and coffee brewing and its growth in GIT hostile environment. Food Research International, 121, 497-505. doi:https://doi.org/10.1016/j.foodres.2018.12.003
Mazkour, S., Shekarforoush, S. S., & Basiri, S. (2019). The effects of supplementation of Bacillus subtilis and Bacillus coagulans spores on the intestinal microflora and growth performance in rat. Iranian journal of microbiology, 11(3), 260
Meidong, R., Khotchanalekha, K., Doolgindachbaporn, S., Nagasawa, T., Nakao, M., Sakai, K., & Tongpim, S. (2018). Evaluation of probiotic Bacillus aerius B81e isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Pla-mong Pangasius bocourti. Fish & shellfish immunology, 73, 1-10. doi:https://doi.org/10.1016/j.fsi.2017.11.032
Mingmongkolchai, S., & Panbangred, W. (2018). Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol, 12(6), 1334-1346. doi:https://doi.org/10.1111/jam.13690
Ozdemir, M., & Floros, J. (2001). Analysis and modeling of potassium sorbate diffusion through edible whey protein films. Journal of Food Engineering, 47(2), 149-155. doi:https://doi.org/10.1016/S0260-8774(00)00113-8
Pandey, K. R., Shinde, P. S., & Vakil, B. V. (2015). Evaluation of molecular variations in probiotic Bacillus coagulans and its bacteriophage resistant mutants. Int J Curr Microbiol Appl Sci, 4(4), 343-355.
Poormontaseri, M., Hosseinzadeh, S., Shekarforoush, S. S., & Kalantari, T. (2017). The effects of probiotic Bacillus subtilis on the cytotoxicity of Clostridium perfringens type a in Caco-2 cell culture. BMC microbiology, 17(1), 150. doi:https://doi.org/10.1186/s12866-017-1051-1
Setlow, P. (2003). Spore germination. Current opinion in microbiology, 6(6), 550-556. doi:https://doi.org/10.1016/j.mib.2003.10.001
Thankappan, B., Ramesh, D., Ramkumar, S., Natarajaseenivasan, K., & Anbarasu, K. (2015). Characterization of Bacillus spp. from the gastrointestinal tract of Labeo rohita-towards to identify novel probiotics against fish pathogens. Applied biochemistry and biotechnology, 175(1), 340-353. doi:https://doi.org/10.1007/s12010-014-1270-y
Trunk, T., Khalil, H. S., & Leo, J. C. (2018). Bacterial autoaggregation. AIMS microbiology, 4(1), 140. doi:https://doi.org/10.3934/microbiol.2018.1.140
Vaidya, Y., Patel, S., Kunjadiya, P., Joshi, C., & Kunjadiya, A. (2018). The effect of prebiotics on bacteriocin production and gut adhesion potential of Lysinibacillus sphaericus DY13 and Bacillus clausii DY14. Journal of Microbial World, 10(4), 369-385.
Volume 11, Issue 1
June 2022
Pages 29-42
  • Receive Date: 09 January 2021
  • Revise Date: 15 May 2021
  • Accept Date: 16 May 2021