نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه بهداشت مواد غذایی، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار، گروه زیست‌شناسی، دانشکده علوم و فناوری‌های عملگرا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

فیکوبیلی‌پروتئین‌ها، رنگدانه‌های جانبی فتوسنتزی با ساختمان تتراپیرولی مستخرج از سویه‌های باکتری‌ها هستند که در داخل ساختمانی به نام فیکوبیلی‌زوم روی غشاهایی تلاکوئیدی سازمان یافته‌اند. فیکوبیلی‌پروتئین‌ها، به‌طور گسترده‌ای در ساخت پروب‌های فلورسنت و تجزیه‌وتحلیل بالینی و ایمونولوژیکی تجاری‌سازی شده‌اند، علاوه‌برآن قابلیت رنگ‌کنندگی آنها همراه با خواص آنتی‌اکسیدانی و دارویی به اثبات رسیده است. فیکواریترین‌ها، فیکوسیانین‌ها و آلوفیکوسیانین‌ها از انواع اصلی فیکوبیلی‌پروتئین‌ها هستند که به‌عنوان مکمل‌های غذایی فراسودمند امروزه کاربرد وسیعی دارند، بااین‌حال تاکنون در ایران به ارزش واقعی این رنگدانۀ طبیعی با خواص زیست‌فعال پی‌برده نشده است. امروزه استفاده از رنگ‌کننده‌ها و آنتی‌اکسیدان‌های مصنوعی در محصولات غذایی، منجربه‌افزایش بیماری سرطان در بسیاری از انسان‌ها شده است. ازاین‌رو، آگاهی از حضور رنگدانه‌های طبیعی خوراکی با منشأ طبیعی از اهمیت خاصی برخوردار است. ازطرف‌دیگر، ازآنجایی‌که تاکنون مقالۀ مروری درمورد استخراج، جداسازی و خالص‌سازی و همچنین ارزیابی فعالیت زیستی رنگدانۀ فیکواریترین و فیکوسیانین در ایران به چاپ نرسیده است، لذا این چنین مقاله‌های مروری می‌توانند زمینه‌ساز معرفی رنگدانه‌های طبیعی خوراکی از سیانوباکتری‌ها با قابلیت استفاده در صنایع غذایی تلقی گردد. بنابراین هدف از این مقالۀ مروری؛ معرفی ساختار، عملکرد، بیوسنتز و روش‌های مختلف استخراج فیکوبیلی‌پروتئین‌ها در ابعاد صنعتی به‌همراه کاربردهای مختلف فیکوسیانین‌ها در صنایع غذایی و دارویی است.

کلیدواژه‌ها

  1. نوروزی، ب.، انوار، ا.، و اهری، ح. (1399). استخراج، خالص سازی و ارزیابی خواص ضد میکروبی و آنتی اکسیدانی رنگدانه فیکواریترین سیانوباکتری خاکزی Nostoc sp. FA1.. فصلنامه علمی پژوهشی دنیای میکروب ها، 13(43-2)، 138-153.
  2. Adir, N., Dobrovetsky, Y., & Lerner, N. (2001). Structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 Å: structural implications for thermal stability in phycobilisome assembly. Journal of molecular biology, 313(1), 71-81. doi:https://doi.org/10.1006/jmbi.2001.5030
  3. Batista, A. P., Raymundo, A., Sousa, I., Empis, J., & Franco, J. M. (2006). Colored food emulsions—implications of pigment addition on the rheological behavior and microstructure. Food Biophysics, 1(4), 216-227. doi:https://doi.org/10.1007/s11483-006-9022-3
  4. Bhat, V. B., & Madyastha, K. (2000). C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochemical and biophysical research communications, 275(1), 20-25.
  5. Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., & Öquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and molecular biology reviews, 62(3), 667-683. doi:https://doi.org/10.1128/MMBR.62.3.667-683.1998
  6. Carlozzi, P. (2003). Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnology and bioengineering, 81(3), 305-315. doi:https://doi.org/10.1002/bit.10478
  7. Carvalho, L. R., Costa-Neves, A., Conserva, G. A., Brunetti, R. L., Hentschke, G. S., Malone, C. F., . . . Rangel, M. (2013). Biologically active compounds from cyanobacteria extracts: in vivo and in vitro aspects. Revista Brasileira de Farmacognosia, 23(3), 471-480. doi:https://doi.org/10.1590/S0102-695X2013005000037
  8. Cherng, S.-C., Cheng, S.-N., Tarn, A., & Chou, T.-C. (2007). Anti-inflammatory activity of c-phycocyanin in lipopolysaccharide-stimulated RAW 264.7 macrophages. Life sciences, 81(19-20), 1431-1435. doi:https://doi.org/10.1016/j.lfs.2007.09.009
  9. Chiu, H.-F., Yang, S.-P., Kuo, Y.-L., Lai, Y.-S., & Chou, T.-C. (2006). Mechanisms involved in the antiplatelet effect of C-phycocyanin. British Journal of Nutrition, 95(2), 435-440. doi:https://doi.org/10.1079/BJN20051643
  10. Chojnacka, K., & Noworyta, A. (2004). Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and microbial technology, 34(5), 461-465. doi:https://doi.org/10.1016/j.enzmictec.2003.12.002
  11. Contreras-Martel, C., Matamala, A., Bruna, C., Poo-Caamaño, G., Almonacid, D., Figueroa, M., . . . Bunster, M. (2007). The structure at 2 Å resolution of Phycocyanin from Gracilaria chilensis and the energy transfer network in a PC–PC complex. Biophysical chemistry, 125(2-3), 388-396. doi:https://doi.org/10.1016/j.bpc.2006.09.014
  12. de Amarante, M. C. A., Braga, A. R. C., Sala, L., & Kalil, S. J. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137, 109602. doi:https://doi.org/10.1016/j.foodres.2020.109602
  13. Encarnação, T., Pais, A. A., Campos, M. G., & Burrows, H. D. (2015). Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Science progress, 98(2), 145-168. doi:https://doi.org/10.3184/003685015X14298590596266
  14. Eriksen, N. T. (2008). Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Applied microbiology and biotechnology, 80(1), 1-14. doi:https://doi.org/10.1007/s00253-008-1542-y
  15. Farooq, S. M., Asokan, D., Kalaiselvi, P., Sakthivel, R., & Varalakshmi, P. (2004). Prophylactic role of phycocyanin: a study of oxalate mediated renal cell injury. Chemico-biological interactions, 149(1), 1-7. doi:https://doi.org/10.1016/j.cbi.2004.05.006
  16. Fernández-Rojas, B., Medina-Campos, O. N., Hernández-Pando, R., Negrette-Guzmán, M., Huerta-Yepez, S., & Pedraza-Chaverri, J. (2014). C-phycocyanin prevents cisplatin-induced nephrotoxicity through inhibition of oxidative stress. Food & function, 5(3), 480-490. doi:https://doi.org/10.1039/C3FO60501A
  17. Gantar, M., & Svirčev, Z. (2008). Microalgae and cyanobacteria: food for thought 1. Journal of phycology, 44(2), 260-268. doi:https://doi.org/10.1111/j.1529-8817.2008.00469.x
  18. Gonzalez, R., Rodriguez, S., Romay, C., González, A., Armesto, J., Remirez, D., & Merino, N. (1999). Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacological research, 39(1), 55-59. doi:https://doi.org/10.1006/phrs.1998.0409
  19. Govindjee, G., & Shevela, D. (2011). Adventures with cyanobacteria: a personal perspective. Frontiers in plant science, 2, 1-17. doi:https://doi.org/10.3389/fpls.2011.00028
  20. Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of high added‐value compounds-a brief review of recent work. Biotechnology progress, 27(3), 597-613. doi:https://doi.org/10.1002/btpr.575
  21. Guerreiro, A., Andrade, M. A., Menezes, C., Vilarinho, F., & Dias, E. (2020). Antioxidant and cytoprotective properties of cyanobacteria: Potential for biotechnological applications. Toxins, 12(9), 548. doi:https://doi.org/10.3390/toxins12090548
  22. Huang, Z., Guo, B., Wong, R., & Jiang, Y. (2007). Characterization and antioxidant activity of selenium-containing phycocyanin isolated from Spirulina platensis. Food Chemistry, 100(3), 1137-1143. doi:https://doi.org/10.1016/j.foodchem.2005.11.023
  23. Jaiswal, P., Singh, P. K., & Prasanna, R. (2008). Cyanobacterial bioactive molecules—an overview of their toxic properties. Canadian Journal of Microbiology, 54(9), 701-717. doi:https://doi.org/10.1139/W08-034
  24. Jensen, G. S. (2001). Blue-green algae as an immuno-enhancer and biomodulator. J. Am. Nutraceutical Assoc., 3, 24-30.
  25. Jespersen, L., Strømdahl, L. D., Olsen, K., & Skibsted, L. H. (2005). Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Research and Technology, 220(3), 261-266. doi:https://doi.org/10.1007/s00217-004-1062-7
  26. Jiménez, C., Cossı́o, B. R., Labella, D., & Niell, F. X. (2003). The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture, 217(1-4), 179-190. doi:https://doi.org/10.1016/S0044-8486(02)00118-7
  27. Kultschar, B., & Llewellyn, C. (2018). Chapter 2-Secondary metabolites in cyanobacteria: IntechOpen.
  28. Liu, D., Liberton, M., Hendry, J. I., Aminian-Dehkordi, J., Maranas, C. D., & Pakrasi, H. B. (2021). Engineering biology approaches for food and nutrient production by cyanobacteria. Current Opinion in Biotechnology, 67, 1-6. doi:https://doi.org/10.1016/j.copbio.2020.09.011
  29. Liu, Y., Xu, L., Cheng, N., Lin, L., & Zhang, C. (2000). Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. Journal of Applied Phycology, 12(2), 125-130. doi:https://doi.org/10.1023/A:1008132210772
  30. Madhyastha, H., Radha, K., Sugiki, M., Omura, S., & Maruyama, M. (2006). C-phycocyanin transcriptionally regulates uPA mRNA through cAMP mediated PKA pathway in human fibroblast WI-38 cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1760(11), 1624-1630. doi:https://doi.org/10.1016/j.bbagen.2006.08.012
  31. Martínez-Francés, E., & Escudero-Oñate, C. (2018). Chapter 6-Cyanobacteria and microalgae in the production of valuable bioactive compounds (Vol. 6): IntechOpen.
  32. McCarty, M. F. (2007a). Clinical potential of Spirulina as a source of phycocyanobilin. Journal of medicinal food, 10(4), 566-570. doi:https://doi.org/10.1089/jmf.2007.621
  33. McCarty, M. F. (2007b). ‘‘Iatrogenic Gilbert syndrome’’–A strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Medical hypotheses, 69(5), 974-994. doi:https://doi.org/10.1016/j.mehy.2006.12.069
  34. Mishra, S. K., Shrivastav, A., & Mishra, S. (2008). Effect of preservatives for food grade C-PC from Spirulina platensis. Process Biochemistry, 43(4), 339-345. doi:https://doi.org/10.1016/j.procbio.2007.12.012
  35. Mysliwa-Kurdziel, B., & Solymosi, K. (2017). Phycobilins and phycobiliproteins used in food industry and medicine. Mini reviews in medicinal chemistry, 17(13), 1173-1193. doi:https://doi.org/10.2174/1389557516666160912180155
  36. Nicoletti, M. (2016). Microalgae nutraceuticals. Foods, 5(3), 54. doi:https://doi.org/10.3390/foods5030054
  37. Nield, J., Rizkallah, P. J., Barber, J., & Chayen, N. E. (2003). The 1.45 Å three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. Journal of structural biology, 141(2), 149-155. doi:https://doi.org/10.1016/S1047-8477(02)00609-3
  38. Nowruzi, B., Anvar, A., & Ahari, H. (2020). Extraction, purification and evaluation of antimicrobial and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1. Journal of Microbial World, 13(2-43), 138-153.  (in Persian)
  39. Nowruzi, B., Fahimi, H., & Sturion Lorenzi, A. (2020). Recovery of pure C-phycoerythrin from a limestone drought tolerant cyanobacterium Nostoc sp. and evaluation of its biological activity. Anales de Biología, 42, 115-128. doi:http://dx.doi.org/10.6018/analesbio.42.13
  40. Nowruzi, B., Haghighat, S., Fahimi, H., & Mohammadi, E. (2018). Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research, 9(1), 5-12. doi:https://doi.org/10.1111/jphs.12202
  41. Nowruzi, B., & Jokela, J. (2019). Identification of Four Different Chlorophyll Allomers of Nostoc Sp. by Liquid Chromatography-Mass Spectrometer (LC-MS). International Journal of Plant studies, 2(3), 1-4.
  42. Nowruzi, B., Sarvari, G., & Blanco, S. (2020a). Chapter 28- Applications of cyanobacteria in biomedicine Handbook of Algal Science, Technology and Medicine (pp. 441-453): Elsevier.
  43. Nowruzi, B., Sarvari, G., & Blanco, S. (2020b). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959. doi:https://doi.org/10.1016/j.algal.2020.101959
  44. Panjiar, N., Mishra, S., Yadav, A. N., & Verma, P. (2017). Chapter 2-Functional foods from cyanobacteria: An emerging source for functional food products of pharmaceutical importance. In V. K. Gupta, H. Treichel, V. O. Shapaval, L. A. de Oliveira, & M. G. Tuohy (Eds.), Microbial functional foods and nutraceuticals (pp. 21-37): Joun Wiley & Sons.
  45. Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V., . . . Natarajan, C. (2010). Rediscovering cyanobacteria as valuable sources of bioactive compounds. Applied Biochemistry and Microbiology, 46(2), 119-134. doi:https://doi.org/10.1134/S0003683810020018
  46. Prasanna, R., Sood, A., Suresh, A., Nayak, S., & Kaushik, B. (2007). Potentials and applications of algal pigments in biology and industry. Acta Botanica Hungarica, 49(1-2), 131-156. doi:https://doi.org/10.1556/abot.49.2007.1-2.14
  47. Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied microbiology and biotechnology, 65(6), 635-648. doi:https://doi.org/10.1007/s00253-004-1647-x
  48. Rajabpour, N., Nowruzi, B., & Ghobeh, M. (2019). Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta Biologica Slovenica, 62(2), 3-14.
  49. Rimbau, V., Camins, A., Romay, C., González, R., & Pallàs, M. (1999). Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neuroscience letters, 276(2), 75-78. doi:https://doi.org/10.1016/S0304-3940(99)00792-2
  50. Riss, J., Décordé, K., Sutra, T., Delage, M., Baccou, J.-C., Jouy, N., . . . Rouanet, J.-M. (2007). Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J. of Agricultural and Food Chemistry, 55(19), 7962-7967. doi:https://doi.org/10.1021/jf070529g
  51. Romay, C., Armesto, J., Remirez, D., González, R., Ledon, N., & Garcia, I. (1998). Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflammation research, 47(1), 36-41. doi:https://doi.org/10.1007/s000110050256
  52. Roy, K. R., Arunasree, K. M., Reddy, N. P., Dheeraj, B., Reddy, G. V., & Reddanna, P. (2007). Alteration of mitochondrial membrane potential by Spirulina platensis C‐phycocyanin induces apoptosis in the doxorubicinresistant human hepatocellular‐carcinoma cell line HepG2. Biotechnology and applied biochemistry, 47(3), 159-167. doi:https://doi.org/10.1042/BA20060206
  53. Safavi, M., Nowruzi, B., Estalaki, S., & Shokri, M. (2019). Biological Activity of Methanol Extract from Nostoc sp. N42 and Fischerella sp. S29 Isolated from Aquatic and Terrestrial Ecosystems. International Journal on Algae, 21(4), 373-391. doi:https://doi.org/10.1615/InterJAlgae.v21.i4.80
  54. Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722. doi:https://doi.org/10.1016/j.sjbs.2017.11.003
  55. Sekar, S., & Chandramohan, M. (2008). Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology, 20(2), 113-136. doi:https://doi.org/10.1007/s10811-007-9188-1
  56. Sørensen, L., Hantke, A., & Eriksen, N. T. (2013). Purification of the photosynthetic pigment C‐phycocyanin from heterotrophic Galdieria sulphuraria. Journal of the Science of Food and Agriculture, 93(12), 2933-2938. doi:https://doi.org/10.1002/jsfa.6116
  57. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of bioscience and bioengineering, 101(2), 87-96. doi:https://doi.org/10.1263/jbb.101.87
  58. Subhashini, J., Mahipal, S. V., Reddy, M. C., Reddy, M. M., Rachamallu, A., & Reddanna, P. (2004). Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochemical pharmacology, 68(3), 453-462. doi:https://doi.org/10.1016/j.bcp.2004.02.025
  59. Sun, L., Wang, S., Chen, L., & Gong, X. (2003). Promising fluorescent probes from phycobiliproteins. IEEE Journal of selected topics in quantum electronics, 9(2), 177-188. doi:https://doi.org/10.1109/JSTQE.2003.812499
  60. Telford, W. G., Moss, M. W., Morseman, J. P., & Allnutt, F. T. (2001). Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. Journal of immunological methods , 254(1-2), 13-30. doi:https://doi.org/10.1016/S0022-1759(01)00367-2
  61. Wang, H., Liu, Y., Gao, X., Carter, C. L., & Liu, Z.-R. (2007). The recombinant β subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer letters, 247(1), 150-158. doi:https://doi.org/10.1016/j.canlet.2006.04.002
  62. Wu, H.-L., Wang, G.-H., Xiang, W.-Z., Li, T., & He, H. (2016). Stability and antioxidant activity of food-grade phycocyanin isolated from Spirulina platensis. International journal of food properties, 19(10), 2349-2362. doi:https://doi.org/10.1080/10942912.2015.1038564
  63. Zahra, Z., Choo, D. H., Lee, H., & Parveen, A. (2020). Cyanobacteria: Review of current potentials and applications. Environments, 7(2), 13. doi:https://doi.org/10.3390/environments7020013