نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد، دانشکده مهندسی مواد غذایی و محیط زیست، دانشگاه نگوین تات تان، هوشی‌مین 700000، ویتنام

2 دانش‌آموختۀ کارشناسی ارشد، مؤسسه مهندسی محیط زیست، دانشگاه نگوین تات تان، هوشی‌مین 700000، ویتنام

3 دانشیار، کالج کشاورزی، دانشگاه کان‌تو، کان‌تو 94000، ویتنام

4 دانشیار، مدرسه تحصیلات تکمیلی، دانشگاه کان‌تو، کان‌تو 94000، ویتنام

5 استاد، کالج کشاورزی، دانشگاه کان‌تو، کان‌تو 94000، ویتنام

چکیده

سبزیجات می‌توانند مواد مغذی ازجمله ویتامین‌ها، مواد معدنی و به‌ویژه فیبر را فراهم کنند و سمومی را که در طول هضم غذا ایجاد می‌شوند، آزاد کنند. درنتیجه اهمیت سبزیجات در رژیم غذایی انسان به‌طور فزاینده‌ای مورد تأکید قرار گرفته است. در این تحقیق از کلم قمری، سبزی غنی از ویتامین C برای تخمیر لاکتیک استفاده شد. تمام فرایند با تغییر طیف ‌وسیعی از پارامترها ازجمله غلظت محلول نمک و مقدار pH روی رشد باکتری‌های اسید لاکتیک، بافت محصول و ویژگی‌های حسی بهینه‌سازی شد. براساس نتایج، شرایط بهینه برای فرایند تخمیر شامل محلول 3/5 درصد pH ،NaCl اولیه 4/2 و MnCl2 با غلظت 30 میلی‌مولار بود. محصولات ترشی کلم قمری به‌دست‌آمده پس از 2 روز کیفیت قابل‌قبول و امتیاز حسی خوبی از خود نشان دادند. همچنین مشخص شد که دمای بالا با ازدست‌دادن سختی، کاهش کیفیت و زمان تخمیر طولانی‌تر همراه است. فرایند ترشی کلم قمری بهینه با تنوع بخشیدن به محصولات ترشی کمک می‌کند تا از عیوب ناشی از فراوری نامناسب جلوگیری شود.

کلیدواژه‌ها

Al-Mharib, M. Z. K., Al-Saadi, F. M. J., & Almashhadany, A. H. (2020). Studies on growth and yield indicators for kohlrabi (Brassica oleracea) plant treated with mineral fertilizers and root enhancers. Research on Crops, 21(2), 333-338. doi:https://doi.org/v10.31830/2348-7542.2020.056
Aljahani, A. H. (2020). Microbiological and physicochemical quality of vegetable pickles. Journal of the Saudi Society of Agricultural Sciences, 19(6), 415-421. doi:https://doi.org/10.1016/j.jssas.2020.07.001
Ashaolu, T. J., & Reale, A. (2020). A Holistic Review on Euro-Asian Lactic Acid Bacteria Fermented Cereals and Vegetables. Microorganisms, 8(8). doi:https://doi.org/10.3390/microorganisms8081176
Barbieri, F., Montanari, C., Gardini, F., & Tabanelli, G. (2019). Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods (Basel, Switzerland), 8(1), 17. doi:https://doi.org/10.3390/foods8010017
Battcock, M., & Azam-Ali, S. (1998). Fermented Fruits and Vegetables: A Global Perspective: Food and Agriculture Organization of the United Nations.
Behera, S. S., El Sheikha, A. F., Hammami, R., & Kumar, A. (2020). Traditionally fermented pickles: How the microbial diversity associated with their nutritional and health benefits? Journal of Functional Foods, 70, 103971. doi:https://doi.org/10.1016/j.jff.2020.103971
Chen, C., Lu, Y., Yu, H., Chen, Z., & Tian, H. (2019). Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice. Food Bioscience, 27, 30-36. doi:https://doi.org/10.1016/j.fbio.2018.11.006
Chhabra, S. (2018). Dietary Fibre-Nutrition and Health Benefits. In Functional Food and Human Health (pp. 15-25): Springer.
De Vuyst, L., & Leroy, F. (2020). Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiology Reviews, 44(4), 432-453. doi:https://doi.org/10.1093/femsre/fuaa014
Demain, A. L. (2000). Microbial biotechnology. Trends in Biotechnology, 18(1), 26-31. doi:https://doi.org/10.1016/S0167-7799(99)01400-6
Dhok, A., Butola, L. K., Anjankar, A., Shinde, A. D. R., Kute, P. K., & Jha, R. K. (2020). Role of Vitamins and Minerals in Improving Immunity during Covid-19 Pandemic-A Review. Journal of Evolution of Medical and Dental Sciences, 9(32), 2296-2301. doi:https://doi.org/10.14260/jemds/2020/497
Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33(1), 1-10. doi:https://doi.org/10.1016/j.fm.2012.09.003
Ding, Z., Johanningsmeier, S. D., Price, R., Reynolds, R., Truong, V.-D., Payton, S. C., & Breidt, F. (2018). Evaluation of nitrate and nitrite contents in pickled fruit and vegetable products. Food Control, 90, 304-311. doi:https://doi.org/10.1016/j.foodcont.2018.03.005
Fleming, H. P. (1984). Developments in cucumber fermentation. Journal of Chemical Technology and Biotechnology, 34(4), 241-252. doi:https://doi.org/10.1002/jctb.280340404
Gardner, N. J., Savard, T., Obermeier, P., Caldwell, G., & Champagne, C. P. (2001). Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int J Food Microbiol, 64(3), 261-275. doi:https://doi.org/10.1016/s0168-1605(00)00461-x
Liu, S.-n., Han, Y., & Zhou, Z.-j. (2011). Lactic acid bacteria in traditional fermented Chinese foods. Food Research International, 44(3), 643-651. doi:https://doi.org/10.1016/j.foodres.2010.12.034
Liu, S. Q. (2003). Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int J Food Microbiol, 83(2), 115-131. doi:https://doi.org/10.1016/s0168-1605(02)00366-5
Lošák, T., Zatloukalová, A., Szostková, M., Hlušek, J., Fryč, J., & Vítěz, T. (2011). Comparison of the effectiveness of digestate and mineral fertilisers on yields and quality of kohlrabi (Brassica oleracea, L.). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59(3), 117-122. doi:https://doi.org/10.11118/actaun201159030117
Mahdi, A., Al-Shammari, A., Alalawy, H., & Hathal, A. (2020). Response yield of four cultivar kohlrabi (Brassica oleracea var. caulorapa L.) to plant density and foliar nutrition of seaweed. Plant Archives, 20(2), 4069-4076.
Monika, Savitri, Kumar, V., Kumari, A., Angmo, K., & Bhalla, T. C. (2017). Isolation and characterization of lactic acid bacteria from traditional pickles of Himachal Pradesh, India. J Food Sci Technol, 54(7), 1945-1952. doi:https://doi.org/10.1007/s13197-017-2629-1
Montet, D., Loiseau, G., & Zakhia-Rozis, N. (2006). Microbial technology of fermented vegetables: CRC Press.
Mora-Villalobos, J. A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C., Usaga, J., Redondo-Solano, M., . . . López-Gómez, J. P. (2020). Multi-Product Lactic Acid Bacteria Fermentations: A Review. Fermentation, 6(1), 23. doi:https://doi.org/10.3390/fermentation6010023
Nguyen, D. T., Van Hoorde, K., Cnockaert, M., De Brandt, E., Aerts, M., Binh Thanh, L., & Vandamme, P. (2013). A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int J Food Microbiol, 163(1), 19-27. doi:https://doi.org/10.1016/j.ijfoodmicro.2013.01.024
Panda, S. H., Parmanick, M., & Ray, R. C. (2007). Lactic acid fermentation of sweet potato (ipomoea batatas l.) into pickles. Journal of Food Processing and Preservation, 31(1), 83-101. doi:https://doi.org/10.1111/j.1745-4549.2007.00110.x
Park, C. H., Yeo, H. J., Kim, N. S., Eun, P. Y., Kim, S.-J., Arasu, M. V., . . . Park, S. U. (2017). Metabolic profiling of pale green and purple kohlrabi (Brassica oleracea var. gongylodes). Applied Biological Chemistry, 60(3), 249-257. doi:https://doi.org/10.1007/s13765-017-0274-z
Patra, J. K., Das, G., & Shin, H.-S. (2018). Microbial Biotechnology: Volume 2. Application in Food and Pharmacology: Springer.
Rana, N., Ghabru, A., & Vaidy, A. (2019). Defensive function of fruits and vegetables. Journal of Pharmacognosy and Phytochemistry, 8(3), 1872-1877.
Rao, Y., Tao, Y., Chen, X., She, X., Qian, Y., Li, Y., . . . Liu, L. (2020). The characteristics and correlation of the microbial communities and flavors in traditionally pickled radishes. LWT, 118, 108804. doi:https://doi.org/10.1016/j.lwt.2019.108804
Salehi, F. (2019). Color changes kinetics during deep fat frying of kohlrabi (Brassica oleracea var. gongylodes) slice. International Journal of Food Properties, 22(1), 511-519. doi:https://doi.org/10.1080/10942912.2019.1593616
Salehi, F., & Aghajanzadeh, S. (2020). Effect of dried fruits and vegetables powder on cakes quality: A review. Trends in Food Science & Technology, 95, 162-172. doi:https://doi.org/10.1016/j.tifs.2019.11.011
Scapin, T., Louie, J. C. Y., Pettigrew, S., Neal, B., Rodrigues, V. M., Fernandes, A. C., . . . Proença, R. (2021). The adaptation, validation, and application of a methodology for estimating the added sugar content of packaged food products when total and added sugar labels are not mandatory. Food Res Int, 144, 110329. doi:https://doi.org/10.1016/j.foodres.2021.110329
Septembre-Malaterre, A., Remize, F., & Poucheret, P. (2018). Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res Int, 104, 86-99. doi:https://doi.org/10.1016/j.foodres.2017.09.031
Soltan Dallal, M. M., Zamaniahari, S., Davoodabadi, A., Hosseini, M., & Rajabi, Z. (2017). Identification and characterization of probiotic lactic acid bacteria isolated from traditional persian pickled vegetables. GMS hygiene and infection control, 12, Doc15-Doc15. doi:https://doi.org/10.3205/dgkh000300
Ulukapı, K., & Kacar, Y. (2020). The Effects of Water Deficiency on Plant and Tuber Growth of Kohlrabi (Brassica oleracea L. var gongylodes). Turkish Journal of Agriculture-Food Science and Technology, 8(2), 416-420. doi:https://doi.org/10.24925/turjaf.v8i2.416-420.3103
Varzakas, T., Zakynthinos, G., Proestos, C., & Radwanska, M. (2017). Fermented Vegetables. In F. Yildiz & R. C. Wiley (Eds.), Minimally Processed Refrigerated Fruits and Vegetables (pp. 537-584). Boston, MA: Springer US.
Viander, B., Mäki, M., & Palva, A. (2003). Impact of low salt concentration, salt quality on natural large-scale sauerkraut fermentation. Food Microbiology, 20(4), 391-395. doi:https://doi.org/10.1016/S0740-0020(02)00150-8
Wanselius, J., Axelsson, C., Moraeus, L., Berg, C., Mattisson, I., & Larsson, C. (2019). Procedure to Estimate Added and Free Sugars in Food Items from the Swedish Food Composition Database Used in the National Dietary Survey Riksmaten Adolescents 2016-17. Nutrients, 11(6), 1342. doi:https:L//doi.org/10.3390/nu11061342
Xiong, T., Guan, Q., Song, S., Hao, M., & Xie, M. (2012). Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation. Food Control, 26(1), 178-181. doi:https://doi.org/10.1016/j.foodcont.2012.01.027