Effects of Agitation and Aeration on Growth Kinetics of Spirulina platensis and Production of Natural Pigments in Stirred Photobioreactor

Document Type : Original Paper

Authors

1 MSc. Student, Department of Food Science and Technology, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

2 Associate professor, Department of Food Science and Technology, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

3 MSc. Graduate, Department of Food Science and Technology, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Abstract

Spirulina platensis is a planktonic, photosynthetic filamentous cyanobacterium with bioactive molecules, which is a rich source of pigments such as phycocyanin.In this study, effects of two important factors of agitation and aeration on biomass production of S. platensis and its production of chlorophyll, phycocyanin, allofycocyanin and carotenoids at 28 °C, pH 9 and with agitation rates of 20 and 50 rpm with and without aeration were studied in immersion culture using stirring reactor. Results showed that aeration in treatments with agitation rates of 20 rpm significantly increased concentrations of the pigments (phycocyanin, allofycocyanin, chlorophyll and carotenoids) and biomass. In contrast, aeration in treatments with agitation rates of 50 rpm inhibited pigment production (P<0.05). The highest quantity of biomass and concentrations of phycocyanin, allofycocyanin, chlorophyll and carotenoids respectively were 1.39 g.l-1 and 136.5, 38, 8.62 and 3.05 mg.l-1, which were linked to treatment with aerationat 20 rpm. Based on the current results, aeration of the culture media significantly increased concentrations of allofycocyanin. Under conditions without aeration, increases in agitation rates increased biomass quantities. The highest quantity of biomass and concentrations of phycocyanin, allofycocyanin, chlorophyll and carotenoids were achieved using aeration at an agitation speed of 20 rpm. 

Keywords

Banayan, S., Jahadi, M., & Fazel, M. (2020). Investigation of Influencing Factors on Production of Chlorophyll and Carotenoid Pigments from Spirulina Platensis Using Platelet-Burman Design. Journal of Food Microbiology, 7(2), 70-81.  (in Persian)
Chaiklahan, R., Chirasuwan, N., Loha, V., Tia, S., & Bunnag, B. (2011). Separation and purification of phycocyanin from Spirulina sp. using a membrane process. Bioresource technology, 102(14), 7159-7164. doi:https://doi.org/10.1016/j.biortech.2011.04.067
Chen, H.-B., Wu, J.-Y., Wang, C.-F., Fu, C.-C., Shieh, C.-J., Chen, C.-I., . . . Liu, Y.-C. (2010). Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemical Engineering Journal, 53(1), 52-56. doi:https://doi.org/10.1016/j.bej.2010.09.004
Colla, L. M., Reinehr, C. O., Reichert, C., & Costa, J. A. V. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource technology, 98(7), 1489-1493. doi:https://doi.org/10.1016/j.biortech.2005.09.030
Deamici, K. M., Santos, L. O., & Costa, J. A. V. (2018). Magnetic field action on outdoor and indoor cultures of Spirulina: Evaluation of growth, medium consumption and protein profile. Bioresource technology, 249, 168-174. doi:https://doi.org/10.1016/j.biortech.2017.09.185
Doke, J. M. (2005). An improved and efficient method for the extraction of phycocyanin from Spirulina sp. International Journal of Food Engineering, 1(5). doi:https://doi.org/10.2202/1556-3758.1037
Ghobadian, S., Ganjidoust, H., Ayati, B., & Soltani, N. (2018). The Growth and Quality Optimization of Spirulina Biomass by Changing the Dilution of Medium and Using the Aeration Cycle. Modares Journal of Biotechnology, 9(3), 385-393. (in Persian)
Jain, S., & Singh, S. G. (2012). Optimization of biomass yield of Spirulina platensis grown in petha (Benincasa hispida Thunb.) waste in different culture conditions. Indian Journal of Biotechnology, 11, 498-501.
Khazi, M., Demirel, Z., & Conk, D. M. (2018). Enhancement of biomass and phycocyanin content of Spirulina platensis. Frontiers In Bioscience, 10, 276-286.
Lima, G. M., Teixeira, P. C., Teixeira, C. M., Filócomo, D., & Lage, C. L. (2018). Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Research, 31, 157-166. doi:https://doi.org/10.1016/j.algal.2018.02.012
Mirón, A. S., Garcıa, M. C. C., Gómez, A. C., Camacho, F. G., Grima, E. M., & Chisti, Y. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3), 287-297. doi:https://doi.org/10.1016/S1369-703X(03)00072-X
Ogbonda, K. H., Aminigo, R. E., & Abu, G. O. (2007). Influence of aeration and lighting on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh in the Niger Delta, Nigeria. African Journal of Biotechnology, 6(22), 2596-2600. doi:https://doi.org/10.5897/AJB2007.000-2414
Pegallapati, A. K., & Nirmalakhandan, N. (2011). Energetic evaluation of an internally illuminated photobioreactor for algal cultivation. Biotechnology letters, 33(11), 2161-2167. doi:https://doi.org/10.1007/s10529-011-0691-8
Ravelonandro, P. H., Ratianarivo, D. H., Joannis-Cassan, C., Isambert, A., & Raherimandimby, M. (2011). Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food and bioproducts Processing, 89(3), 209-216. doi:https://doi.org/10.1016/j.fbp.2010.04.009
Ronda, S. R., Bokka, C. S., Ketineni, C., Rijal, B., & Allu, P. R. (2012). Aeration effect on Spirulina platensis growth and γ-linolenic acid production. Brazilian Journal of Microbiology, 43(1), 12-20. doi:https://doi.org/10.1590/S1517-83822012000100002
Sánchez, M., Bernal-Castillo, J., Rozo, C., & Rodríguez, I. (2003). Spirulina (Arthrospira): an edible microorganism: a review. Universitas Scientiarum, 8(1), 7-24.
Soni, R. A., Sudhakar, K., & Rana, R. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5, 327-336. doi:https://doi.org/10.1016/j.egyr.2019.02.009
Zeng, X., Danquah, M. K., Zhang, S., Zhang, X., Wu, M., Chen, X. D., . . . Lu, Y. (2012). Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chemical Engineering Journal, 183, 192-197. doi:https://doi.org/10.1016/j.cej.2011.12.062
Zhang, L., Chen, L., Wang, J., Chen, Y., Gao, X., Zhang, Z., & Liu, T. (2015). Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresource technology, 181, 136-142. doi:https://doi.org/10.1016/j.biortech.2015.01.025
Zhu, C., Zhai, X., Wang, J., Han, D., Li, Y., Xi, Y., . . . Chi, Z. (2018). Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device. Applied microbiology and biotechnology, 102, 8979-8987. doi:https://doi.org/10.1007/s00253-018-9258-0
CAPTCHA Image
Volume 10, Issue 3
December 2021
Pages 261-272
  • Receive Date: 20 June 2021
  • Revise Date: 03 October 2021
  • Accept Date: 05 October 2021