نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه بهداشت مواد غذایی، واحد آیت‌الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

2 گروه علوم و صنایع غذایی، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران

3 گروه شیمی مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

4 گروه علوم و صنایع غذایی، واحد آیت‌الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

چکیده

درون‌پوشانی مواد در نانولیپوزوم‌ها می‌تواند به‌عنوان یک سیستم حامل محافظتی از ترکیبات زیست‌فعال طی فراوری و نگهداری در شرایط مختلف مورد استفاده قرار گیرد. فیکوبیلی‌پروتئین‌های مستخرج از جلبک‌ها با دارابودن ویژگی‌های آنتی‌اکسیدانی، ضدمیکروبی، ضدسرطانی و ضدالتهابی می‌توانند جهت تولید مواد اولیۀ غذاهای فراسودمند مورد استفاده قرار گیرد. لذا، در مطالعۀ حاضر رنگدانۀ فیکوبیلی‌پروتئین از جلبک گراسیلاریا استخراج و میزان رنگیزه‌ها موردبررسی قرار گرفت. نانولیپوزوم‌های حاوی رنگدانه با پوشش کیتوزان (0، 0/5، 1 و 1/5 درصد) تهیه شد و خصوصیات فیزیکوشیمیایی، فعالیت آنتی‌اکسیدانی و ضدمیکروبی آن ارزیابی گردید. میانگین قطر نانولیپوزوم‌ها و شاخص پراکندگی به‌ترتیب از محدودۀ 336/9 تا 577/7 نانومتر و 0/25 تا 0/28 در نانوحامل‌ها متغیر بود. بالاترین مقادیر راندمان نانوپوشانی نانولیپوزوم فیکوبیلی‌پروتئین (83/98 درصد) تحت‌شرایط بهینه در نانولیپوزوم با پوشش 1/5 درصد کیتوزان به‌دست‌آمد. نتایج نشان داد فعالیت ضدمیکروبی تیمارها به‌طور معنی‌داری پس از کپسوله‌کردن در نانولیپوزوم افزایش یافت. علاوه‌بر این فعالیت آنتی‌اکسیدانی فیکوبیلی‌پروتئین‌ها پس از نانوپوشانی در لیپوزوم‌ها به‌طور معنی‌داری افزایش داشت. به‌طوری‌که میزان EC50 به پی‌پی‌ام 1/40±81/27 و 6/76±107/67 به‌ترتیب در تست‌های مهار رادیکال آزاد 1و1-دی‌فنیل-2-پیکریل-هیدرازیل و 2و2-آزینوبیس (3-اتیل بنزوتیازولین 6-سلفونیک اسید) در نانولیپوزوم با پوشش 1/5 درصد کیتوزان کاهش یافت. براساس یافته‌های این تحقیق می‌توان نتیجه گرفت که درون‌پوشانی با پوشش کیتوزان به‌طور مؤثری پایداری، خواص ضدمیکروبی و فعالیت‌های آنتی‌اکسیدانی آن را افزایش داده است. لذا جهت افزایش پایداری ترکیبات طبیعی طی فرایندهای مختلف پیشنهاد می‌گردد.

کلیدواژه‌ها

موضوعات

© 2022, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Assis, L. M. d., Machado, A. R., Motta, A. d. S. d., Costa, J. A. V., & Soares, L. A. d. S. (2014). Development and characterization of nanovesicles containing phenolic compounds of microalgae Spirulina strain LEB-18 and Chlorella pyrenoidosa. Advances in Materials Physics and Chemistry, 4, 6-12. https://doi.org/10.4236/ampc.2014.41002
Bagheri Dinani, S., Dehpour, A., & Eslami, B. (2014, August). Investigation of essential oil components and antimicrobial effects of various extracts of Gracilaria gracilis Second National Conference on Medicinal Plants and Sustainable Agriculture, Hamedan. https://civilica.com/doc/306228/ (in Persian)
Bang, S., Hwang, I., Yu, Y., Kwon, H., Kim, D., & Park, H. J. (2011). Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. Journal of microencapsulation, 28(7), 595-604. https://doi.org/10.3109/02652048.2011.557748
Beheshtipour, H., Mortazavian, A. M., Mohammadi, R., Sohrabvandi, S., & Khosravi‐Darani, K. (2013). Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Comprehensive Reviews in Food Science and Food Safety, 12(2), 144-154. https://doi.org/10.1111/1541-4337.12004
Chen, X., Wu, M., Yang, Q., & Wang, S. (2017). Preparation, characterization of food grade phycobiliproteins from Porphyra haitanensis and the application in liposome-meat system. Lwt, 77, 468-474. https://doi.org/10.1016/j.lwt.2016.12.005
Cui, H., Zhou, H., & Lin, L. (2016). The specific antibacterial effect of the Salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container. Food Control, 61, 92-98. https://doi.org/10.1016/j.foodcont.2015.09.034
El Asbahani, A., Miladi, K., Badri, W., Sala, M., Addi, E. A., Casabianca, H., . . . Renaud, F. (2015). Essential oils: From extraction to encapsulation. International journal of pharmaceutics, 483(1-2), 220-243. https://doi.org/10.1016/j.ijpharm.2014.12.069
Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology, 23(1), 13-27. https://doi.org/10.1016/j.tifs.2011.08.003
Ghorbanzade, T., Jafari, S. M., Akhavan, S., & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146-152. https://doi.org/10.1016/j.foodchem.2016.08.022
Ha, T. V. A., Kim, S., Choi, Y., Kwak, H.-S., Lee, S. J., Wen, J., . . . Ko, S. (2015). Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chemistry, 178, 115-121. https://doi.org/10.1016/j.foodchem.2015.01.048
Hasani, S., Ojagh, S. M., & Ghorbani, M. (2018). Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics. International Journal of Biological Macromolecules, 115, 143-151. https://doi.org/10.1016/j.ijbiomac.2018.04.038
Hasani, S., Shahidi Noghabi, M., & Ojagh, S. M. (2019). The Production and Evaluation of Nanoliposomes Containing Bioactive Peptides Derived from Fish Wastes Using the Alkalase Enzyme. Research and Innovation in Food Science and Technology, 8(1), 31-44. https://doi.org/10.22101/jrifst.2019.04.30.813 (in Persian)
Hashemi, M., Ehsani, A., Hassani, A., Afshari, A., Aminzare, M., Sahranavard, T., & Azimzadeh, Z. (2017). Phytochemical, Antibacterial, Antifungal and Antioxidant Properties of Agastache foeniculum Essential Oil. Journal of Chemical Health Risks, 7(2), -. https://doi.org/10.22034/jchr.2017.544170
Hosseini, S. F., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chemistry, 136(3), 1490-1495. https://doi.org/10.1016/j.foodchem.2012.09.081
Katouzian, I., & Taheri, R. A. (2021). Preparation, characterization and release behavior of chitosan-coated nanoliposomes (chitosomes) containing olive leaf extract optimized by response surface methodology. Journal of Food Science and Technology, 58(9), 3430-3443. https://doi.org/10.1007/s13197-021-04972-2
Liu, N., & Park, H.-J. (2009). Chitosan-coated nanoliposome as vitamin E carrier. Journal of microencapsulation, 26(3), 235-242. https://doi.org/10.1080/02652040802273469
Machado, A. R., Pinheiro, A. C., Vicente, A. A., Souza-Soares, L. A., & Cerqueira, M. A. (2019). Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Research International, 120, 656-667. https://doi.org/10.1016/j.foodres.2018.11.023
Moghimipour, E., Aghel, N., Mahmoudabadi, A. Z., Ramezani, Z., & Handali, S. (2012). Preparation and characterization of liposomes containing essential oil of Eucalyptus camaldulensis leaf. Jundishapur journal of natural pharmaceutical products, 7(3), 117.
Moraes, C. C., Sala, L., Cerveira, G. P., & Kalil, S. J. (2011). C-phycocyanin extraction from Spirulina platensis wet biomass. Brazilian Journal of Chemical Engineering, 28(1), 45-49. https://doi.org/10.1590/S0104-66322011000100006
Nabivailo, Y. V., Skriptsova, A. V., & Titlyanov, E. A. (2005). Interactions of Algae within the Community of Gracilaria gracilis (Rhodophyta). Russian Journal of Marine Biology, 31(5), 288-293. https://doi.org/10.1007/s11179-005-0090-x
Page, D. T., & Cudmore, S. (2001). Innovations in oral gene delivery: challenges and potentials. Drug Discovery Today, 6(2), 92-101. https://doi.org/10.1016/S1359-6446(00)01600-7
Pandey, V., Pandey, A., & Sharma, V. (2013). Biotechnological applications of cyanobacterial phycobiliproteins. International Journal of Current Microbiology and Applied Sciences, 2(9), 89-97.
Peng, C., Hong-Bo, S., Di, X., & Song, Q. (2009). Progress in Gracilaria Biology and Developmental Utilization: Main Issues and Prospective. Reviews in Fisheries Science, 17(4), 494-504. https://doi.org/10.1080/10641260903144586
Rasti, B., Jinap, S., Mozafari, M. R., & Yazid, A. M. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chemistry, 135(4), 2761-2770. https://doi.org/10.1016/j.foodchem.2012.07.016
Rocha, G. A., Fávaro-Trindade, C. S., & Grosso, C. R. F. (2012). Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food and Bioproducts Processing, 90(1), 37-42. https://doi.org/10.1016/j.fbp.2011.01.001
Safari, R., Raftani Amiri, Z., & Esmaeilzadeh Kenari, R. (2018). Evaluation of the effect of temperature, time and pH on stability of phycocyanin extracted from Spirulina platensis. Iranian Scientific Fisheries Journal, 26(5), 85-93. https://doi.org/10.22092/isfj.2017.115342 (in Persian)
Salminen, H., Gömmel, C., Leuenberger, B. H., & Weiss, J. (2016). Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems. Food Chemistry, 190, 928-937. https://doi.org/10.1016/j.foodchem.2015.06.054
Seyed Yagoubi, A., Shahidi, F., Mohebbi, M., Varidi, M., & Golmohammadzadeh, S. (2018). Preparation, characterization and evaluation of physicochemical properties of phycocyanin-loaded solid lipid nanoparticles and nanostructured lipid carriers. Journal of Food Measurement and Characterization, 12(1), 378-385. https://doi.org/10.1007/s11694-017-9650-y
Seyedabadi, M. M., Rostami, H., Jafari, S. M., & Fathi, M. (2021). Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Bioscience, 40, 100857. https://doi.org/10.1016/j.fbio.2020.100857
Souza, J. M., Caldas, A. L., Tohidi, S. D., Molina, J., Souto, A. P., Fangueiro, R., & Zille, A. (2014). Properties and controlled release of chitosan microencapsulated limonene oil. Revista Brasileira de Farmacognosia, 24, 691-698. https://doi.org/10.1016/j.bjp.2014.11.007
Taheri, A., Sabeena Farvin, K. H., Jacobsen, C., & Baron, C. P. (2014). Antioxidant activities and functional properties of protein and peptide fractions isolated from salted herring brine. Food Chemistry, 142, 318-326. https://doi.org/10.1016/j.foodchem.2013.06.113
Takeuchi, H., & Sugihara, H. (2010). Absorption of calcitonin in oral and pulmonary administration with polymer-coated liposomes. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan, 130(9), 1135-1142. https://doi.org/10.1248/yakushi.130.1135
Taylor, T. M., Weiss, J., Davidson, P. M., & Bruce, B. D. (2005). Liposomal Nanocapsules in Food Science and Agriculture. Critical Reviews in Food Science and Nutrition, 45(7-8), 587-605. https://doi.org/10.1080/10408390591001135
Volkmann, H., Imianovsky, U., Oliveira, J. L., & Sant'Anna, E. S. (2008). Cultivation of Arthrospira (Spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile. Brazilian Journal of Microbiology, 39(1), 98-101. https://doi.org/10.1590/S1517-83822008000100022
Wang, B., Li, Z.-R., Chi, C.-F., Zhang, Q.-H., & Luo, H.-Y. (2012). Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle. Peptides, 36(2), 240-250. https://doi.org/10.1016/j.peptides.2012.05.013
Wyman, M., & Fay, P. (1986). Interaction between light quality and nitrogen availability in the differentiation of akinetes in the planktonic cyanobacterium Gloeotrichia echinulata. British Phycological Journal, 21(2), 147-153. https://doi.org/10.1080/00071618600650171
Younes, I., & Rinaudo, M. (2015). Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 13(3), 1133-1174. https://doi.org/10.3390/md13031133