Thermal Stabilization of the Betalain Extract Using Encapsulation and Co-pigmentation and its Application in the Model Drink

Document Type : Original Paper

Authors

1 Assistant Professor, Department of Food Additives, Food Science and Technology Research Institute, ACECR, Khorasan Razavi, Mashhad, Iran

2 MSc. Student, Department of Food Science and Technology, ACECR, Kashmar Higher Education Institute, Kashmar, Iran

Abstract

One of the important challenges about using of the betalains is their low stability against light and heat. Therefore, the main goal of this research was to stabilize the extracted betalain from red beet against thermal treatments. To investigate the thermal stability of the betalain, encapsulation (using maltodextrin, gum Arabic, gum farsi, whey protein concentrate (WPC) and alpha and beta cyclodextrins) and co-pigmentation method using pure co-pigments such as gallic acid, ferulic acid, quercetin and rutin (at different molar ratios of 2.5-100:1 co-pigment/betalain) and rosehip extract (at two molar ratios of 50:1 and 100:1 gallic acid equivalent/betalain) were applied. The results indicated that WPC was the most effective wall material which maintained the higher betalain (81.50 mg/100 g powder) during drying and, after using the microcapsules in the model drink, the highest retained betalain (48.20 %) was related to the WPC microcapsules. Alpha and beta cyclodextrins and pure phenolic co-pigments did not have any significant effect on the betalain stability. Rosehip extract at two molar ratios of 50:1 and 100:1 (gallic acid equivalent/betalain) led to increasing of the betalain retention which was also obvious during storage at accelerated temperature and light condition, even after 14 days; so that the betalain content of the sample containing rosehip extract did not decreaseduring 14 days storage.

Keywords

Bazaria, B., & Kumar, P. (2017). Comparative analysis of bio-polymers addition on structural and physical properties of spray dried beetroot juice concentrate. Journal of Food Processing and Preservation, 41(6), e13232. doi: https://doi.org/10.1111/jfpp.13232
Bourvellec, C. L., & Renard, C. (2003). Association entre les procyanidols et les polymères pariétaux de pommes: quantification et conséquences.
Carmo, E. L. d., Teodoro, R. A. R., Félix, P. H. C., Fernandes, R. V. d. B., Oliveira, É. R. d., Veiga, T. R. L. A., . . . Botrel, D. A. (2018). Stability of spray-dried beetroot extract using oligosaccharides and whey proteins. Food Chemistry, 249, 51-59. doi:https://doi.org/10.1016/j.foodchem.2017.12.076
Chang, C., Yang, M., Wen, H.-M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10, 178-182. doi:https://doi.org/10.38212/2224-6614.2748
Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., & Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry, 272, 192-200. doi:https://doi.org/10.1016/j.foodchem.2018.08.022
Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2015). Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation. Food Research International, 76, 761-768. doi:https://doi.org/10.1016/j.foodres.2015.07.003
Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2016). Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition. Food Chemistry, 201, 14-22. doi:https://doi.org/10.1016/j.foodchem.2016.01.051
Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural Pigments: Carotenoids, Anthocyanins, and Betalains — Characteristics, Biosynthesis, Processing, and Stability. Critical Reviews in Food Science and Nutrition, 40(3), 173-289. doi:https://doi.org/10.1080/10408690091189257
Drunkler, D. A., Fett, R., & Luiz, M. T. B. (2006). The evaluation of stability of betalains in beetroot (beta vulgaris l.) extract add to of α-, ß- and y-cyclodextrins. 2006. doi:http://dx.doi.org/10.5380/cep.v24i1.5272
Ercisli, S. (2007). Chemical composition of fruits in some rose (Rosa spp.) species. Food Chemistry, 104(4), 1379-1384. doi:https://doi.org/10.1016/j.foodchem.2007.01.053
Ertan, K., Türkyılmaz, M., & Özkan, M. (2018). Effect of sweeteners on anthocyanin stability and colour properties of sour cherry and strawberry nectars during storage. Journal of Food Science and Technology, 55(10), 4346-4355. doi:https://doi.org/10.1007/s13197-018-3387-4
Fan, L., Wang, Y., Xie, P., Zhang, L., Li, Y., & Zhou, J. (2019). Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food Chemistry, 275, 299-308. doi:https://doi.org/10.1016/j.foodchem.2018.09.103
Faridah, A., Holinesti, R., & Syukri, D. (2015). Betalains from Red Pitaya Peel (Hylocereus polyrhizus): Extraction, Spec‌ tro‌ photometric & HPLC-DAD Identification, Bioactivity & Toxicity Screening. Pakistan Journal of Nutrition, 14(12), 976-982. doi:https://doi.org/10.3923/pjn.2015.976.982
Fernandes, A., Sousa, A., Azevedo, J., Mateus, N., & de Freitas, V. (2013). Effect of cyclodextrins on the thermodynamic and kinetic properties of cyanidin-3-O-glucoside. Food Research International, 51(2), 748-755. doi:https://doi.org/10.1016/j.foodres.2013.01.037
Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2010). Structural implications on color, fluorescence, and antiradical activity in betalains. Planta, 232(2), 449-460. doi:https://doi.org/10.1007/s00425-010-1191-0
Ge, J., Yue, P., Chi, J., Liang, J., & Gao, X. (2018). Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids, 74, 23-31. doi:https://doi.org/10.1016/j.foodhyd.2017.07.029
Haddadi, T., & Najafi, M. A. (2016). Determining extraction efficiency and betalain pigment stability of red beetroot. Innovative Food Technologies, 3(4), 57-63. doi:https://dx.doi.org/10.22104/jift.2016.326 (in Persian)
Herbach, K. M., Stintzing, F. C., & Carle, R. (2006). Betalain Stability and Degradation—Structural and Chromatic Aspects. Journal of Food Science, 71(4), R41-R50. doi:https://doi.org/10.1111/j.1750-3841.2006.00022.x
Howard, L. R., Brownmiller, C., Prior, R. L., & Mauromoustakos, A. (2013). Improved Stability of Chokeberry Juice Anthocyanins by β-Cyclodextrin Addition and Refrigeration. Journal of Agricultural and Food Chemistry, 61(3), 693-699. doi:https://doi.org/10.1021/jf3038314
Kanha, N., Surawang, S., Pitchakarn, P., Regenstein, J. M., & Laokuldilok, T. (2019). Copigmentation of cyanidin 3-O-glucoside with phenolics: Thermodynamic data and thermal stability. Food Bioscience, 30, 100419. doi:https://doi.org/10.1016/j.fbio.2019.100419
Khan, M. I. (2016). Stabilization of betalains: A review. Food Chemistry, 197, 1280-1285. doi:https://doi.org/10.1016/j.foodchem.2015.11.043
Khan, M. I., & Giridhar, P. (2014). Enhanced chemical stability, chromatic properties and regeneration of betalains in Rivina humilis L. berry juice. LWT - Food Science and Technology, 58(2), 649-657. doi:https://doi.org/10.1016/j.lwt.2014.03.027
Kopjar, M., Bilić, B., & Piližota, V. (2014). Anthocyanins, phenols, and antioxidant activity in blackberry juice with plant extracts addition during heating. Acta Alimentaria, 43(2), 333-343. doi:https://doi.org/10.1556/aalim.43.2014.2.18
Manchali, S., Murthy, K. N. C., Nagaraju, S., & Neelwarne, B. (2013). Stability of betalain pigments of red beet Red beet biotechnology (pp. 55-74): Springer.
Mazza, G., & Miniati, E. (2018). Anthocyanins in fruits, vegetables, and grains: CRC press.
Mohamad, M. F., Dailin, D. J., Gomaa, S. E. E. D., Nurjayadi, M., & Enshasy, H. A. E. (2019). Natural Colorant For Food: A Healthy Alternative. Int J Sci Technol Res, 8, 3161-3166.
Mollov, P., Mihalev, K., Shikov, V., Yoncheva, N., & Karagyozov, V. (2007). Colour stability improvement of strawberry beverage by fortification with polyphenolic copigments naturally occurring in rose petals. Innovative Food Science & Emerging Technologies, 8(3), 318-321. doi:https://doi.org/10.1016/j.ifset.2007.03.004
Organization, I. N. S. (2019). Permitted food additives- Food colors- List and general specifications. ISIRI Standard No. 740, 6th Revision. Retrieved from https://standard.isiri.gov.ir/StandardView.aspx?Id=51687 (in Persian)
Otálora, M. C., Carriazo, J. G., Iturriaga, L., Nazareno, M. A., & Osorio, C. (2015). Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chemistry, 187, 174-181. doi:https://doi.org/10.1016/j.foodchem.2015.04.090
Prieto-Santiago, V., Cavia, M. M., Alonso-Torre, S. R., & Carrillo, C. (2020). Relationship between color and betalain content in different thermally treated beetroot products. Journal of Food Science and Technology, 57(9), 3305-3313. doi:https://doi.org/10.1007/s13197-020-04363-z
Rahimi, S., & Abbasi, S. (2014). Characterization of some physicochemical and gelling properties of Persian gum. Innovative Food Technologies, 1(4), 13-27. doi:https://dx.doi.org/10.22104/jift.2014.47
Ravichandran, K., Palaniraj, R., Saw, N. M. M. T., Gabr, A. M. M., Ahmed, A. R., Knorr, D., & Smetanska, I. (2014). Effects of different encapsulation agents and drying process on stability of betalains extract. Journal of Food Science and Technology, 51(9), 2216-2221. doi:https://doi.org/10.1007/s13197-012-0728-6
Righi da Rosa, J., Nunes, G. L., Motta, M. H., Fortes, J. P., Cezimbra Weis, G. C., Rychecki Hecktheuer, L. H., . . . Severo da Rosa, C. (2019). Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocolloids, 89, 742-748. doi:https://doi.org/10.1016/j.foodhyd.2018.11.042
Robert, P., & Fredes, C. (2015). The Encapsulation of Anthocyanins from Berry-Type Fruits. Trends in Foods. Molecules, 20(4), 5875-5888. doi:https://doi.org/10.3390/molecules20045875
Rodrigues da Cruz, M. C., Andreotti Dagostin, J. L., Perussello, C. A., & Masson, M. L. (2019). Assessment of physicochemical characteristics, thermal stability and release profile of ascorbic acid microcapsules obtained by complex coacervation. Food Hydrocolloids, 87, 71-82. doi:https://doi.org/10.1016/j.foodhyd.2018.07.043
Rosenberg, M., Kopelman, I. J., & Talmon, Y. (1990). Factors affecting retention in spray-drying microencapsulation of volatile materials. Journal of Agricultural and Food Chemistry, 38(5), 1288-1294. doi:https://doi.org/10.1021/jf00095a030
Saberian, H. (2018). Comparison of the quality properties of the rosehip powder from several regions of Iran with commercial samples. Journal of Food Science and Technology, 15(82), 139-149.  (in Persian)
Saberian, H. (2020). Research project of production of food supplement of the rosehip as capsule for treatment of arthritis. Retrieved from Research Institute of Food Science and Technology, ACECR, Khorasan Razavi, Iran (in Persian)
Saberian, H., Hamidi‐Esfahani, Z., & Abbasi, S. (2013). Effect of pasteurization and storage on bioactive components of Aloe vera gel. Nutrition & Food Science, 43(2), 175-183. doi:https://doi.org/10.1108/00346651311313553
Shikov, V., Kammerer, D. R., Mihalev, K., Mollov, P., & Carle, R. (2008). Heat Stability of Strawberry Anthocyanins in Model Solutions Containing Natural Copigments Extracted from Rose (Rosa damascena Mill.) Petals. Journal of Agricultural and Food Chemistry, 56(18), 8521-8526. doi:https://doi.org/10.1021/jf801946g
Skopinska, A., Szot, D., & Wybraniec, T. (2015). The effect of citric acid and matrix of B . vulgaris L . juice on thermal stability of betalains.
Tonon, R. V., Brabet, C., Pallet, D., Brat, P., & Hubinger, M. D. (2009). Physicochemical and morphological characterisation of açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44(10), 1950-1958. doi:https://doi.org/10.1111/j.1365-2621.2009.02012.x
Tutunchi, P., Roufegarinejad, L., Hamishehkar, H., & Alizadeh, A. (2019). Extraction of red beet extract with β-cyclodextrin-enhanced ultrasound assisted extraction: A strategy for enhancing the extraction efficacy of bioactive compounds and their stability in food models. Food Chemistry, 297, 124994. doi:https://doi.org/10.1016/j.foodchem.2019.124994
Weber, F., Boch, K., & Schieber, A. (2017). Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT, 75, 72-77. doi:https://doi.org/10.1016/j.lwt.2016.08.042
Zhao, X., Ding, B.-W., Qin, J.-W., He, F., & Duan, C.-Q. (2020). Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chemistry, 326, 126960. doi:https://doi.org/10.1016/j.foodchem.2020.126960
CAPTCHA Image
Volume 10, Issue 3
December 2021
Pages 325-340
  • Receive Date: 06 December 2021
  • Revise Date: 18 December 2021
  • Accept Date: 18 December 2021