Stability Enhancement of Natural Food Colorants- A Review

Document Type : Review Paper

Author

Assistant Professor, Department of Biosystem Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

The public knowledge about the importance of using natural ingredients in food products opened new areas toward the extraction, stabilization, storage, and application of natural colors. The stabilization of natural colorants has a key role in their application in food industries. Colorants are significantly sensitive out of their natural resources and some of them start to fade rapidly after extraction. In this paper, the most applicable methods for the stabilization of natural colorants in the food industry were reviewed. The present paper aims to review the published scientific researches about stabilization methods of different natural colorants. The Google Scholar, PubMed, Web of Science databases were searched. Among 120 final selected papers, 73 related papers have used. The review starts from the manuscripts published in 2020 and then continued to review the manuscripts published in 2000. Different kinds of literature reported stabilization methods of major natural colorants like anthocyanins, carotenoids, chlorophylls, and betalains. These ways can be applied to food studies before, during, and after the formulation and manufacturing of food products. Because of the different roles of natural colorants in human health and also the oxidative stability of foods, it may be a good choice to stabilize and application of natural colorants in food products.

Keywords

Astete, C. E., Sabliov, C. M., Watanabe, F., & Biris, A. (2009). Ca2+ Cross-Linked Alginic Acid Nanoparticles for Solubilization of Lipophilic Natural Colorants. Journal of Agricultural and Food Chemistry, 57(16), 7505-7512. doi:https://doi.org/10.1021/jf900563a
Bandeira, A. C., da Silva, R. C., Rossoni, J. V. J., Figueiredo, V. P., Talvani, A., Cangussu, S. D., . . . Costa, D. C. (2017). Lycopene pretreatment improves hepatotoxicity induced by acetaminophen in C57BL/6 mice. Bioorg Med Chem, 25(3), 1057-1065. doi:https://doi.org/10.1016/j.bmc.2016.12.018
Bassa, L. A., & Francis, F. J. (1987). Stability of Anthocyanins from Sweet Potatoes in a Model Beverage. Journal of Food Science, 52(6), 1753-1754. doi:https://doi.org/10.1111/j.1365-2621.1987.tb05927.x
Bastos, R. D. S., Oliveira, K. K. G. D., Melo, E. D. A., & Lima, V. L. A. G. D. E. (2017). Stability of Anthocyanins from Agroindustrial Residue of Isabel Grape Grown in SÃo Francisco Valley, Brazil. Revista Brasileira de Fruticultura, 39(1). doi:https://doi.org/10.1590/0100-29452017564
Bechtold, T., & Mussak, R. (2009). Handbook of Natural Colorants: ohn Wiley & Sons, Ltd. .
Caldas-Cueva, J. P., Morales, P., Ludeña, F., Betalleluz-Pallardel, I., Chirinos, R., Noratto, G., & Campos, D. (2016). Stability of Betacyanin Pigments and Antioxidants in Ayrampo (Opuntia soehrensii Britton and Rose) Seed Extracts and as a Yogurt Natural Colorant. Journal of Food Processing and Preservation, 40(3), 541-549. doi:https://doi.org/10.1111/jfpp.12633
Calvo, C., & Salvador, A. (2000). Use of natural colorants in food gels. Influence of composition of gels on their colour and study of their stability during storage. Food Hydrocolloids, 14(5), 439-443. doi:https://doi.org/10.1016/S0268-005X(00)00023-0
Campos, K. K. D., Araujo, G. R., Martins, T. L., Bandeira, A. C. B., Costa, G. P., Talvani, A., . . . Bezerra, F. S. (2017). The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke. J Nutr Biochem, 48, 9-20. doi:https://doi.org/10.1016/j.jnutbio.2017.06.004
Chatham, L. A., Howard, J. E., & Juvik, J. A. (2020). A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life. Food Chemistry, 310, 125734.
Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2015). Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation. Food Res Int, 76(Pt 3), 761-768. doi:https://doi.org/10.1016/j.foodres.2015.07.003
Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2016a). Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition. Food Chem, 201, 14-22. doi:https://doi.org/10.1016/j.foodchem.2016.01.051
Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2016b). Stabilization of natural colors and nutraceuticals: Inhibition of anthocyanin degradation in model beverages using polyphenols. Food Chem, 212, 596-603. doi:https://doi.org/10.1016/j.foodchem.2016.06.025
Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2017). Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages. Food Chem, 218, 277-284. doi:https://doi.org/10.1016/j.foodchem.2016.09.087
Cortez, R., Luna‐Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 180-198. doi:https://doi.org/10.1111/1541-4337.12244
Dai, Y., Verpoorte, R., & Choi, Y. H. (2014). Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem, 159, 116-121. doi:https://doi.org/10.1016/j.foodchem.2014.02.155
Davidov-Pardo, G., Gumus, C. E., & McClements, D. J. (2016). Lutein-enriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability. Food Chem, 196, 821-827. doi:https://doi.org/10.1016/j.foodchem.2015.10.018
Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39(9), 1033-1046. doi:https://doi.org/10.1016/S0032-9592(03)00258-9
Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural Pigments: Carotenoids, Anthocyanins, and Betalains — Characteristics, Biosynthesis, Processing, and Stability. Critical Reviews in Food Science and Nutrition, 40(3), 173-289. doi:https://doi.org/10.1080/10408690091189257
Delgado-Vargas, F., & Paredes-López, O. (2003). Natural Colorants for Food and Nutraceutical Uses: CRC.
Duangmal, K., Saicheua, B., & Sueeprasan, S. (2008). Colour evaluation of freeze-dried roselle extract as a natural food colorant in a model system of a drink. LWT - Food Science and Technology, 41(8), 1437-1445. doi:https://doi.org/10.1016/j.lwt.2007.08.014
Espín, J. C., Soler-Rivas, C., Wichers, H. J., & García-Viguera, C. (2000). Anthocyanin-Based Natural Colorants:  A New Source of Antiradical Activity for Foodstuff. Journal of Agricultural and Food Chemistry, 48(5), 1588-1592. doi:https://doi.org/10.1021/jf9911390
Francis, F. J., & Markakis, P. C. (1989). Food colorants: Anthocyanins. Critical Reviews in Food Science and Nutrition, 28(4), 273-314. doi:https://doi.org/10.1080/10408398909527503
Frede, K., Henze, A., Khalil, M., Baldermann, S., Schweigert, F. J., & Rawel, H. (2014). Stability and cellular uptake of lutein-loaded emulsions. Journal of Functional Foods, 8, 118-127. doi:https://doi.org/10.1016/j.jff.2014.03.011
Ghidouche, S., Rey, B., Michel, M., & Galaffu, N. (2013). A Rapid tool for the stability assessment of natural food colours. Food Chem, 139(1-4), 978-985. doi:https://doi.org/10.1016/j.foodchem.2012.12.064
Giusti, M. M., & Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3), 217-225. doi:https://doi.org/10.1016/s1369-703x(02)00221-8
Gomes, L. M., Petito, N., Costa, V. G., Falcao, D. Q., & de Lima Araujo, K. G. (2014). Inclusion complexes of red bell pepper pigments with beta-cyclodextrin: preparation, characterisation and application as natural colorant in yogurt. Food Chem, 148, 428-436. doi:https://doi.org/10.1016/j.foodchem.2012.09.065
He, Z., Xu, M., Zeng, M., Qin, F., & Chen, J. (2016). Preheated milk proteins improve the stability of grape skin anthocyanins extracts. Food Chem, 210, 221-227. doi:https://doi.org/10.1016/j.foodchem.2016.04.116
Hernández-Martínez, A. R., Torres, D., Molina, G. A., Esparza, R., Quintanilla, F., Martínez-Bustos, F., & Estevez, M. (2017). Stability comparison between microencapsulated red-glycosidic pigments and commercial FD&C Red 40 dye for food coloring. Journal of Materials Science, 52(9), 5014-5026. doi:https://doi.org/10.1007/s10853-016-0739-1
Howard, L. R., Brownmiller, C., & Prior, R. L. (2014). Improved color and anthocyanin retention in strawberry puree by oxygen exclusion. Journal of Berry Research, 4(2), 107-116.
Huang, F.-L., Chiou, R. Y.-Y., Chen, W.-C., Ko, H.-J., Lai, L.-J., & Lin, S.-M. (2016). Dehydrated Basella alba Fruit Juice as a Novel Natural Colorant: Pigment Stability, In Vivo Food Safety Evaluation and Anti-Inflammatory Mechanism Characterization. Plant Foods for Human Nutrition, 71(3), 322-329. doi:https://doi.org/10.1007/s11130-016-0563-4
Kaimainen, M. (2014). Stability of Natural Colorants of Plant Origin: Food Chem, University of Turku.
Khan, M. I. (2016). Stabilization of betalains: A review. Food Chemistry, 197, 1280-1285.
Kırca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. doi:https://doi.org/10.1016/j.foodchem.2006.01.019
Leong, H. Y., Show, P. L., Lim, M. H., Ooi, C. W., & Ling, T. C. (2017). Natural red pigments from plants and their health benefits: A review. Food Reviews International, 1-20. doi:https://doi.org/10.1080/87559129.2017.1326935
Lourith, N., & Kanlayavattanakul, M. (2011). Biological activity and stability of mangosteen as a potential natural color. Biosci Biotechnol Biochem, 75(11), 2257-2259. doi:https://doi.org/10.1271/bbb.110521
Ludin, N. A., Al-Alwani Mahmoud, A. M., Bakar Mohamad, A., Kadhum, A. A. H., Sopian, K., & Abdul Karim, N. S. (2014). Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 31, 386-396. doi:https://doi.org/10.1016/j.rser.2013.12.001
Luna-Vital, D., Li, Q., West, L., West, M., & Gonzalez de Mejia, E. (2017). Anthocyanin condensed forms do not affect color or chemical stability of purple corn pericarp extracts stored under different pHs. Food Chem, 232, 639-647. doi:https://doi.org/10.1016/j.foodchem.2017.03.169
Martelli, G., Folli, C., Visai, L., Daglia, M., & Ferrari, D. (2014). Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications. Process Biochemistry, 49(1), 154-159. doi:https://doi.org/10.1016/j.procbio.2013.10.008
Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. F. R. (2016). Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1-15. doi:https://doi.org/10.1016/j.tifs.2016.03.009
Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. F. R. (2017). Coloring attributes of betalains: a key emphasis on stability and future applications. Food & Function, 8(4), 1357-1372. doi:https://doi.org/10.1039/C7FO00144D
McClements, D. J., Decker, E. A., & Weiss, J. (2007). Emulsion-Based Delivery Systems for Lipophilic Bioactive Components. Journal of Food Science, 72(8), R109-R124. doi:https://doi.org/10.1111/j.1750-3841.2007.00507.x
Mojica, L., Berhow, M., & Gonzalez de Mejia, E. (2017). Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chemistry, 229(Supplement C), 628-639. doi:https://doi.org/10.1016/j.foodchem.2017.02.124
Ngamwonglumlert, L., Devahastin, S., & Chiewchan, N. (2017). Molecular structure, stability and cytotoxicity of natural green colorants produced from Centella asiatica L. leaves treated by steaming and metal complexations. Food Chem, 232, 387-394. doi:https://doi.org/10.1016/j.foodchem.2017.04.034
Pan-utai, W., Kahapana, W., & Iamtham, S. (2017). Extraction of C-phycocyanin from Arthrospira (Spirulina) and its thermal stability with citric acid. Journal of Applied Phycology. doi:https://doi.org/10.1007/s10811-017-1155-x
Qian, B. J., Liu, J. H., Zhao, S. J., Cai, J. X., & Jing, P. (2017). The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Food Chem, 228, 526-532. doi:https://doi.org/10.1016/j.foodchem.2017.01.120
Ranjbar, A., & Ranjbar, E. (2016). Antimicrobial Property of Lycopene Oleoresin on some Food Pathogens. Iranian Food Science and Technology Research Journal, 12(3), 382-387. doi:https://doi.org/10.22067/ifstrj.v12i3.50061
Ranjbar Nedamani, A. (2020). The Effect of Lycopene, Chlorophyll, and Berberis Vulgaris Extracts on Cake Properties. Iranian Food Science and Technology Research Journal, -. doi:https://doi.org/10.22067/ifstrj.2020.39667.0
Ranjbar Nedamani, A., Ranjbar Nedamani, E., & Salimi, A. (2019). The role of lycopene in human health as a natural colorant. Nutrition & Food Science, 49(2), 284-298. doi:https://doi.org/10.1108/NFS-08-2018-0221
Ravichandran, K., Palaniraj, R., Saw, N. M. M. T., Gabr, A. M. M., Ahmed, A. R., Knorr, D., & Smetanska, I. (2014). Effects of different encapsulation agents and drying process on stability of betalains extract. Journal of Food Science and Technology, 51(9), 2216-2221. doi:https://doi.org/10.1007/s13197-012-0728-6
Rodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. Current Opinion in Food Science, 7, 20-26. doi:https://doi.org/10.1016/j.cofs.2015.08.004
Rodriguez-Sanchez, J. A., Cruz, Y. V. M. T., & Barragan-Huerta, B. E. (2017). Betaxanthins and antioxidant capacity in Stenocereus pruinosus: Stability and use in food. Food Res Int, 91, 63-71. doi:https://doi.org/10.1016/j.foodres.2016.11.023
Rodriguez-Saona, L. E., Giusti, M. M., & Wrolstad, R. E. (1999). Color and Pigment Stability of Red Radish and Red-Fleshed Potato Anthocyanins in Juice Model Systems. Journal of Food Science, 64(3), 451-456. doi:https://doi.org/10.1111/j.1365-2621.1999.tb15061.x
Selig, M. J., Gamaleldin, S., Celli, G. B., Marchuk, M. A., Smilgies, D.-M., & Abbaspourrad, A. (2020). The stabilization of food grade copper-chlorophyllin in low pH solutions through association with anionic polysaccharides. Food Hydrocolloids, 98, 105255. doi:https://doi.org/10.1016/j.foodhyd.2019.105255
Sigurdson, G. T., & Giusti, M. M. (2014). Bathochromic and hyperchromic effects of aluminum salt complexation by anthocyanins from edible sources for blue color development. Journal of Agricultural and Food Chemistry, 62(29), 6955-6965.
Sigurdson, G. T., Tang, P., & Giusti, M. M. (2017). Natural Colorants: Food Colorants from Natural Sources. Annual Review of Food Science and Technology, 8(1), 261-280. doi:https://doi.org/10.1146/annurev-food-030216-025923
Silva, V. O., Freitas, A. A., Maçanita, A. L., & Quina, F. H. (2016). Chemistry and photochemistry of natural plant pigments: the anthocyanins. Journal of Physical Organic Chemistry, 29(11), 594-599. doi:https://doi.org/10.1002/poc.3534
Sroynak, R., Srikalong, P., & Raviyan, P. (2013). Radical Scavenging Capacity and Antioxidant Activity of the Vitamin E Extracted from Palm Fatty Acid Distillate by Sequential Cooling Hexane. Journal of Agricultural Science, 5(4). doi:https://doi.org/10.5539/jas.v5n4p224
Sultan Alvi, S., Ansari, I. A., Khan, I., Iqbal, J., & Khan, M. S. (2017). Potential role of lycopene in targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia. Free Radic Biol Med, 108, 394-403. doi:https://doi.org/10.1016/j.freeradbiomed.2017.04.012
Tachibana, N., Kimura, Y., & Ohno, T. (2014). Examination of molecular mechanism for the enhanced thermal stability of anthocyanins by metal cations and polysaccharides. Food Chemistry, 143, 452-458.
Topuz, A., Feng, H., & Kushad, M. (2009). The effect of drying method and storage on color characteristics of paprika. LWT - Food Science and Technology, 42(10), 1667-1673. doi:https://doi.org/10.1016/j.lwt.2009.05.014
Torres, F. A. E., Zaccarim, B. R., de Lencastre Novaes, L. C., Jozala, A. F., Santos, C. A. d., Teixeira, M. F. S., & Santos-Ebinuma, V. C. (2016). Natural colorants from filamentous fungi. Applied Microbiology and Biotechnology, 100(6), 2511-2521. doi:https://doi.org/10.1007/s00253-015-7274-x
Vendruscolo, F., Luise Müller, B., Esteves Moritz, D., de Oliveira, D., Schmidell, W., & Luiz Ninow, J. (2013). Thermal stability of natural pigments produced by Monascus ruber in submerged fermentation. Biocatalysis and Agricultural Biotechnology, 2(3), 278-284. doi:https://doi.org/10.1016/j.bcab.2013.03.008
Wallace, T. C., & Giusti, M. M. (2008). Determination of Color, Pigment, and Phenolic Stability in Yogurt Systems Colored with Nonacylated Anthocyanins from Berberis boliviana L. as Compared to Other Natural/Synthetic Colorants. Journal of Food Science, 73(4), C241-C248. doi:https://doi.org/10.1111/j.1750-3841.2008.00706.x
Weber, F., Boch, K., & Schieber, A. (2017). Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT - Food Science and Technology, 75, 72-77. doi:https://doi.org/10.1016/j.lwt.2016.08.042
Weigel, F., Weiss, J., Decker, E. A., & McClements, D. J. (2018). Lutein-enriched emulsion-based delivery systems: Influence of emulsifiers and antioxidants on physical and chemical stability. Food Chem, 242, 395-403. doi:https://doi.org/10.1016/j.foodchem.2017.09.060
Xu, H., Liu, X., Yan, Q., Yuan, F., & Gao, Y. (2015). A novel copigment of quercetagetin for stabilization of grape skin anthocyanins. Food Chem, 166, 50-55. doi:https://doi.org/10.1016/j.foodchem.2014.05.125
Yi, J., Fan, Y., Yokoyama, W., Zhang, Y., & Zhao, L. (2016). Characterization of milk proteins-lutein complexes and the impact on lutein chemical stability. Food Chem, 200, 91-97. doi:https://doi.org/10.1016/j.foodchem.2016.01.035
Yin, Y., Fei, L., & Wang, C. (2017). Optimization of Natural Dye Extracted from Phytolaccaceae Berries and Its Mordant Dyeing Properties on Natural Silk Fabric. Journal of Natural Fibers, 1-11. doi:https://doi.org/10.1080/15440478.2017.1320259
Yusuf, M., Shabbir, M., & Mohammad, F. (2017). Natural Colorants: Historical, Processing and Sustainable Prospects. Nat Prod Bioprospect, 7(1), 123-145. doi:https://doi.org/10.1007/s13659-017-0119-9
Zhang, F. F., Morioka, N., Kitamura, T., Fujii, S., Miyauchi, K., Nakamura, Y., . . . Nakata, Y. (2016). Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression. Life Sci, 155, 116-122. doi:https://doi.org/10.1016/j.lfs.2016.05.021
Zhao, C. L., Yu, Y. Q., Chen, Z. J., Wen, G. S., Wei, F. G., Zheng, Q., . . . Xiao, X. L. (2017). Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem, 214, 119-128. doi:https://doi.org/10.1016/j.foodchem.2016.07.073
CAPTCHA Image
Volume 10, Issue 4
January 2022
Pages 369-388
  • Receive Date: 17 March 2021
  • Revise Date: 24 June 2021
  • Accept Date: 25 July 2021