نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 قطب علمی هیدروکلوئیدهای بومی طبیعی ایران، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این پژوهش تأثیر صمغ آگار (0 تا 0/7 درصد) بر ویژگی‌های بافتی، رئولوژیکی و ظرفیت نگهداری آب ژل سرد پرشدۀ امولسیونی ایزولۀ پروتئین آب‌پنیر موردبررسی قرار گرفت. نتایج آزمون برشی پایا نشان داد که تمامی نمونه‌ها دارای رفتار شل‌شونده با برش هستند و با افزایش غلظت آگار، مقدار ضریب قوام از 339/12 پاسکال در ثانیه در نمونۀ شاهد تا 951/46 پاسکال در ثانیه در نمونۀ حاوی 0/7 درصد آگار افزایش یافت. در آزمون کرنش متغیر، غلظت آگار تأثیر معنی‌داری بر پارامترهای رئولوژیکی داشت به‌طوری‌که با افزایش درصد صمغ مقادیر GʹLVE، GʹʹLVE، مدول در نقطۀ متقاطع و تنش نقطۀ جریان افزایش و Tan dLVE کاهش پیدا کردند. طبق آزمون فرکانس متغیر، افزودن آگار به‌طور معنی‌داری مقادیر ʹk و ʹʹk را افزایش داد به‌طوری‌که مقادیر آنها به‌ترتیب از 5311/80 و 939/90 پاسکال در نمونۀ شاهد تا 25080/60 و 3574/90 در نمونۀ حاوی 0/7 درصد آگار افزایش یافت. همچنین مقادیر پارامترهای قدرت شبکه (25344/30-5380/10 پاسکال در ثانیه) گسترش شبکه (15/95-10/05) و انحراف از قانون کوکس-مرز (21509/44-3476/80 پاسکال) به‌طور مستقیم با افزایش درصد صمغ، افزایش پیدا کردند. در ژل امولسیون حاوی 0/7 درصد آگار، بیشترین مدول تانژانت اولیه و تنش شکست ثبت شد که این نمونه در مقایسه با نمونۀ شاهد کرنش شکست کمتر و انرژی شکست مشابه‌ای داشت. همچنین، نتایج پژوهش نشان داد که میزان ظرفیت نگهداری آب در غلظت بالای آگار به‌طور معنی‌داری کاهش پیدا می‌کند. این نتایج به دانش برهم‌کنش پروتئین-پلی‌ساکارید می‌افزاید که می‌تواند در تولید غذاهای کاربردی جدید مفید باشد.

کلیدواژه‌ها

موضوعات

© 2022, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Alavi, F., Emam-Djomeh, Z., Mohammadian, M., Salami, M., & Moosavi-Movahedi, A. A. (2020). Physico-chemical and foaming properties of nanofibrillated egg white protein and its functionality in meringue batter. Food Hydrocolloids, 101, 105554. https://doi.org/10.1016/j.foodhyd.2019.105554
Alavi, F., Momen, S., Emam-Djomeh, Z., Salami, M., & Moosavi-Movahedi, A. A. (2018). Radical cross-linked whey protein aggregates as building blocks of non-heated cold-set gels. Food Hydrocolloids, 81, 429-441. https://doi.org/10.1016/j.foodhyd.2018.03.016
Alghooneh, A., Razavi, S. M., & Kasapis, S. (2018). Hydrocolloid clustering based on their rheological properties. Journal of texture studies, 49(6), 619-638.
Alghooneh, A., Razavi, S. M. A., & Behrouzian, F. (2017). Rheological characterization of hydrocolloids interaction: A case study on sage seed gum-xanthan blends. Food Hydrocolloids, 66, 206-215. https://doi.org/10.1016/j.foodhyd.2016.11.022
Anvari, M., & Joyner, H. S. (2017). Effect of fish gelatin-gum arabic interactions on structural and functional properties of concentrated emulsions. Food Research International, 102, 1-7. https://doi.org/10.1016/j.foodres.2017.09.085
Babaei, J., Mohammadian, M., & Madadlou, A. (2019). Gelatin as texture modifier and porogen in egg white hydrogel. Food Chemistry, 270, 189-195. https://doi.org/10.1016/j.foodchem.2018.07.109
Behrouzain, F., & Razavi, S. M. A. (2020). Structure-rheology relationship of basil seed gum-whey protein isolate mixture: Effect of thermal treatment and biopolymer ratio. Food Hydrocolloids, 102, 105608. https://doi.org/10.1016/j.foodhyd.2019.105608
Behrouzain, F., Razavi, S. M. A., & Joyner, H. (2020). Mechanisms of whey protein isolate interaction with basil seed gum: Influence of pH and protein-polysaccharide ratio. Carbohydrate Polymers, 232, 115775. https://doi.org/10.1016/j.carbpol.2019.115775
Çakır, E., & Foegeding, E. A. (2011). Combining protein micro-phase separation and protein–polysaccharide segregative phase separation to produce gel structures. Food Hydrocolloids, 25(6), 1538-1546. https://doi.org/10.1016/j.foodhyd.2011.02.002
Chaux-Gutiérrez, A. M., Pérez-Monterroza, E. J., & Mauro, M. A. (2019). Rheological and structural characterization of gels from albumin and low methoxyl amidated pectin mixtures. Food Hydrocolloids, 92, 60-68. https://doi.org/10.1016/j.foodhyd.2019.01.025
Costell, E., Peyrolon, M., & Duran, L. (2000). Note. Influence of texture and type of hydrocolloid on perception of basic tastes in carrageenan and gellan gels Nota. Influencia de la textura y del tipo de hidrocoloide en la percepción de los gustos fundamentales en geles de carragenato y de gelana. Food science and technology international, 6(6), 495-499.
Cox, W. P., & Merz, E. H. (1958). Correlation of dynamic and steady flow viscosities. Journal of Polymer Science, 28, 619-622. https://doi.org/10.1002/pol.1958.1202811812
de Jong, S., & van de Velde, F. (2007). Charge density of polysaccharide controls microstructure and large deformation properties of mixed gels. Food Hydrocolloids, 21(7), 1172-1187. https://doi.org/10.1016/j.foodhyd.2006.09.004
Devezeaux de Lavergne, M., Strijbosch, V. M., Van den Broek, A. W., Van de Velde, F., & Stieger, M. (2016). Uncoupling the impact of fracture properties and composition on sensory perception of emulsion‐filled gels. Journal of texture studies, 47(2), 92-111.
Farjami, T., & Madadlou, A. (2019). An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends in Food Science & Technology, 86, 85-94. https://doi.org/10.1016/j.tifs.2019.02.043
Gwartney, E., Larick, D., & Foegeding, E. (2004). Sensory texture and mechanical properties of stranded and particulate whey protein emulsion gels. Journal of food science, 69(9), S333-S339.
Hesarinejad, M. A., Koocheki, A., & Razavi, S. M. A. (2014). Dynamic rheological properties of Lepidium perfoliatum seed gum: Effect of concentration, temperature and heating/cooling rate. Food Hydrocolloids, 35, 583-589. https://doi.org/10.1016/j.foodhyd.2013.07.017
Heydari, A., & Razavi, S. M. A. (2021). Evaluating high pressure-treated corn and waxy corn starches as novel fat replacers in model low-fat O/W emulsions: A physical and rheological study. International Journal of Biological Macromolecules, 184, 393-404. https://doi.org/10.1016/j.ijbiomac.2021.06.052
Jang, B.-K., & Matsubara, H. (2005). Influence of porosity on hardness and Young's modulus of nanoporous EB-PVD TBCs by nanoindentation. Materials Letters, 59(27), 3462-3466. https://doi.org/10.1016/j.matlet.2005.06.014
Karaman, S., Yilmaz, M. T., & Kayacier, A. (2013). Mathematical approach for two component modeling of salep–starch mixtures using central composite rotatable design: Part II. Dynamic oscillatory shear properties and applicability of Cox–Merz rule. Food Hydrocolloids, 31(2), 277-288. https://doi.org/10.1016/j.foodhyd.2012.10.002
Kazemi-Taskooh, Z., & Varidi, M. (2021). Designation and characterization of cold-set whey protein-gellan gum hydrogel for iron entrapment. Food Hydrocolloids, 111, 106205. https://doi.org/10.1016/j.foodhyd.2020.106205
Khalesi, H., Emadzadeh, B., Kadkhodaee, R., & Fang, Y. (2019). Effect of Persian gum on whey protein concentrate cold-set emulsion gel: Structure and rheology study. International Journal of Biological Macromolecules, 125, 17-26. https://doi.org/10.1016/j.ijbiomac.2018.12.051
Khubber, S., Chaturvedi, K., Thakur, N., Sharma, N., & Yadav, S. K. (2021). Low-methoxyl pectin stabilizes low-fat set yoghurt and improves their physicochemical properties, rheology, microstructure and sensory liking. Food Hydrocolloids, 111, 106240. https://doi.org/10.1016/j.foodhyd.2020.106240
Kurt, A., Cengiz, A., & Kahyaoglu, T. (2016). The effect of gum tragacanth on the rheological properties of salep based ice cream mix. Carbohydrate Polymers, 143, 116-123. https://doi.org/10.1016/j.carbpol.2016.02.018
Li, R., Cheng, Y., Tang, N., Wu, L., Nirasawa, S., Jia, X., & Cao, W. (2020). Rheological, structural and physicochemical characteristics of heat-induced egg albumin/sesbania gum mixed gels. International Journal of Biological Macromolecules, 163, 87-95. https://doi.org/10.1016/j.ijbiomac. 2020.06.172
Liu, F., Liang, X., Yan, J., Zhao, S., Li, S., Liu, X., . . . McClements, D. J. (2022). Tailoring the properties of double-crosslinked emulsion gels using structural design principles: Physical characteristics, stability, and delivery of lycopene. Biomaterials, 280, 121265. https://doi.org/10.1016/j.biomaterials.2021.121265
Lu, Y., Mao, L., Hou, Z., Miao, S., & Gao, Y. (2019). Development of Emulsion Gels for the Delivery of Functional Food Ingredients: from Structure to Functionality. Food Engineering Reviews, 11(4), 245-258. https://doi.org/10.1007/s12393-019-09194-z
Luo, N., Ye, A., Wolber, F. M., & Singh, H. (2020). In-mouth breakdown behaviour and sensory perception of emulsion gels containing active or inactive filler particles loaded with capsaicinoids. Food Hydrocolloids, 108,106076. https://doi.org/10.1016/j.foodhyd.2020.106076
Mao, L., Miao, S., Yuan, F., & Gao, Y. (2018). Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Research International, 103, 1-7. https://doi.org/10.1016/j.foodres.2017.10.024
Munialo, C. D., van der Linden, E., Ako, K., Nieuwland, M., Van As, H., & de Jongh, H. H. J. (2016). The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation. Food Hydrocolloids, 52, 707-720. https://doi.org/10.1016/j.foodhyd.2015.08.013
Naji-Tabasi, S., & Razavi, S. M. A. (2017). New studies on basil (Ocimum bacilicum L.) seed gum: Part III- Steady and dynamic shear rheology. Food Hydrocolloids, 67, 243-250. https://doi.org/10.1016/j.foodhyd.2015.12.020
Oliver, L., Scholten, E., & van Aken, G. A. (2015). Effect of fat hardness on large deformation rheology of emulsion-filled gels. Food Hydrocolloids, 43, 299-310. https://doi.org/10.1016/j.foodhyd.2014.05.031
Pandey, S., Senthilguru, K., Uvanesh, K., Sagiri, S. S., Behera, B., Babu, N., . . . Banerjee, I. (2016). Natural gum modified emulsion gel as single carrier for the oral delivery of probiotic-drug combination. Int J Biol Macromol, 92, 504-514. https://doi.org/10.1016/j.ijbiomac.2016.07.053
Pires Vilela, J. A., Cavallieri, Â. L. F., & Lopes da Cunha, R. (2011). The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate-gellan gum. Food Hydrocolloids, 25(7), 1710-1718. https://doi.org/10.1016/j.foodhyd.2011.03.012
Rao, M., & Cooley, H. (1992). Rheological behavior of tomato pastes in steady and dynamic shear. Journal of texture studies, 23(4), 415-425.
Razavi, S. M. A., Alghooneh, A., & Behrouzian, F. (2018). Influence of temperature on sage seed gum (Salvia macrosiphon) rheology in dilute and concentrated regimes. Journal of Dispersion Science and Technology, 39(7), 982-995. https://doi.org/10.1080/01932691.2017.1379020
Sagdic, O., Toker, O. S., Polat, B., Arici, M., & Yilmaz, M. T. (2015). Bioactive and rheological properties of rose hip marmalade. J Food Sci Technol, 52(10), 6465-6474. https://doi.org/10.1007/s13197-015-1753-z
Sow, L. C., Tan, S. J., & Yang, H. (2019). Rheological properties and structure modification in liquid and gel of tilapia skin gelatin by the addition of low acyl gellan. Food Hydrocolloids, 90, 9-18. https://doi.org/10.1016/j.foodhyd.2018.12.006
Torres, O., Murray, B., & Sarkar, A. (2016). Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science & Technology, 55, 98-108. https://doi.org/10.1016/j.tifs.2016.07.006
van den Berg, L., van Vliet, T., van der Linden, E., van Boekel, M. A. J. S., & van de Velde, F. (2007). Serum release: The hidden quality in fracturing composites. Food Hydrocolloids, 21(3), 420-432. https://doi.org/10.1016/j.foodhyd.2006.05.002
Wang, W., Shen, M., Jiang, L., Song, Q., Liu, S., & Xie, J. (2020). Influence of Mesona blumes polysaccharide on the gel properties and microstructure of acid-induced soy protein isolate gels. Food Chemistry, 313, 126125. https://doi.org/10.1016/j.foodchem.2019.126125
Xiong, W., Ren, C., Tian, M., Yang, X., Li, J., & Li, B. (2017). Complex coacervation of ovalbumin-carboxymethylcellulose assessed by isothermal titration calorimeter and rheology: Effect of ionic strength and charge density of polysaccharide. Food Hydrocolloids, 73, 41-50. https://doi.org/10.1016/j.foodhyd.2017.06.031
Yang, Q., Wang, Y.-R., Li-Sha, Y.-J., & Chen, H.-Q. (2021). The effects of basil seed gum on the physicochemical and structural properties of arachin gel. Food Hydrocolloids, 110, 106189. https://doi.org/10.1016/j.foodhyd.2020.106189
Zhang, C., An, D., Xiao, Q., Weng, H., Zhang, Y., Yang, Q., & Xiao, A. (2020). Preparation, characterization, and modification mechanism of agar treated with hydrogen peroxide at different temperatures. Food Hydrocolloids, 101, 105527. https://doi.org/10.1016/j.foodhyd.2019.105527
Zhang, S., & Vardhanabhuti, B. (2014). Acid-induced gelation properties of heated whey protein-pectin soluble complex (Part II): Effect of charge density of pectin. Food Hydrocolloids, 39, 95-103. https://doi.org/10.1016/j.foodhyd.2013.12.020
Zhao, H., Chen, J., Hemar, Y., & Cui, B. (2020). Improvement of the rheological and textural properties of calcium sulfate-induced soy protein isolate gels by the incorporation of different polysaccharides. Food Chem, 310, 125983. https://doi.org/10.1016/j.foodchem.2019.125983
Zheng, H., Beamer, S. K., Matak, K. E., & Jaczynski, J. (2019). Effect of κ-carrageenan on gelation and gel characteristics of Antarctic krill (Euphausia superba) protein isolated with isoelectric solubilization/precipitation. Food Chem, 278, 644-652. https://doi.org/10.1016/j.foodchem.2018.11.080
CAPTCHA Image