مطالعۀ رفتار سینتیک رهایش سینامالدهید ریزپوشانی‌شده با نشاستۀ ذرت با آمیلوز بالا در شرایط شبیه‌سازی‌شدۀ دهان و حین نگهداری و بهینه‌یابی ویژگی‌های ریزکپسول‌ها با روش پایش پارامتری

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد، مشهد، ایران

2 قطب علمی هیدروکلوئیدهای طبیعی بومی ایران، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه مهندسی مکانیک، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این پژوهش، ابتدا امکان پایدارسازی سینامالدهید به‌واسطۀ ریزپوشانی آن با نشاسته و استفاده از فرایند فراصوت در افزایش پایداری آن موردبررسی قرار گرفته است. فرایند ریزپوشانی با استفاده از فراصوت منجربه‌تولید ریزکپسول‌های با قطر متوسط 59/042±636/36 نانومتر شد. میزان کارایی به‌دام‌اندازی سینامالدهید برابر با1/29±53/44 درصد بود که طی 28 روز نگهداری تنها 3 درصد کاهش یافت. سپس رهایش سینامالدهید در شرایط شبیه‌سازی‌شدۀ دهان ازجمله دما، ترکیب بزاق و تنش برشی توسط روش SPME-GC-MS بررسی‌ شد و در ادامه مدل‌سازی تحلیلی با استفاده از برخی مدل‌های سینتیکی نشان داد که مدل‌های درجۀ صفر، کورسمیر-پپاس و ماکوئید بانکر در شرایط دهان و مدل کراسمر-پپاس در طول مدت‌ زمان نگهداری بهتر از سایرین می‌توانند سینتیک رهایش را ارزیابی کنند. برای شبیه‌سازی فرایند رهایش یک مدل دوبُعدی مخزنی با منبع ثابت با استفاده از نرم‌افزار کامسول مالتی‌فیزیکس توسعه‌داده و حل شد. آنالیز استقلال مش، 0/997=R2 و 6-10×1/78=RMSE بیانگر این مسئله است که مدل رهایش سینامالدهید در شرایط واقعی را به‌خوبی پیش‌بینی کرده است. پس از معتبرسازی مدل، پایش پارامترهای فیزیولوژیک و ویژگی‌های ریزکپسول‌ها انجام شد که نشان‌دهندۀ تأثیر مهم‌تر پارامترهای فیزیولوژیک نسبت به ویژگی‌های ریزکپسول‌ها بود. همچنین با استفاده از روش بهینه‌سازی اسنوپت مقادیر بهینۀ این پارامترها ارزیابی گردید.

کلیدواژه‌ها

موضوعات

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Babu, P. S., Prabuseenivasan, S., & Ignacimuthu, S. (2007). Cinnamaldehyde—a potential antidiabetic agent. Phytomedicine, 14(1), 15-22. https://doi.org/10.1021/jf0626009
Barroso, A. K. M., Pierucci, A. P. T. R., Freitas, S. P., Torres, A. G., & Rocha-Leão, M. H. M. d. (2014). Oxidative stability and sensory evaluation of microencapsulated flaxseed oil. Journal of microencapsulation, 31(2), 193-201. https://doi.org/10.3109/02652048.2013.824514
Ben Arfa, A., Preziosi-Belloy, L., Chalier, P., & Gontard, N. (2007). Antimicrobial paper based on a soy protein isolate or modified starch coating including carvacrol and cinnamaldehyde. Journal of agricultural and food chemistry, 55(6), 2155-2162. https://doi.org/10.1021/jf0626009
Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., . . . Carrière, F. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature protocols, 14(4), 991-1014. https://doi.org/10.1038/s41596-018-0119-1
Chang, S.-T., Chen, P.-F., & Chang, S.-C. (2001). Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. Journal of ethnopharmacology, 77(1), 123-127. https://doi.org/10.1016/S0378-8741(01)00273-2
Chao, L. K., Hua, K.-F., Hsu, H.-Y., Cheng, S.-S., Lin, I.-F., Chen, C.-J., . . . Chang, S.-T. (2008). Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food and Chemical Toxicology, 46(1), 220-231. https://doi.org/10.1016/j.fct.2007.07.016
Cook, D. J., Hollowood, T. A., Linforth, R. S. T., & Taylor, A. J. (2003). Oral Shear Stress Predicts Flavour Perception in Viscous Solutions. Chemical Senses, 28(1), 11-23. https://doi.org/10.1093/chemse/28.1.11
Dimantov, A., Kesselman, E., & Shimoni, E. (2004). Surface characterization and dissolution properties of high amylose corn starch–pectin coatings. Food Hydrocolloids, 18(1), 29-37. https://doi.org/10.1016/S0268-005X(03)00039-0
Dong, J., He, Y., Zhang, J., & Wu, Z. (2021). Tuning alginate-bentonite microcapsule size and structure for the regulated release of P. putida Rs-198. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2021.03.056
El-Bassossy, H. M., Fahmy, A., & Badawy, D. (2011). Cinnamaldehyde protects from the hypertension associated with diabetes. Food and Chemical Toxicology, 49(11), 3007-3012. https://doi.org/10.1016/j.fct.2011.07.060
Ernst, E. (1997). Plants with hypoglycemic activity in humans. Phytomedicine, 4(1), 73-78. https://doi.org/10.1016/S0944-7113(97)80031-1
Frank, D., Eyres, G. T., Piyasiri, U., Cochet-Broch, M., Delahunty, C. M., Lundin, L., & Appelqvist, I. M. (2015). Effects of agar gel strength and fat on oral breakdown, volatile release, and sensory perception using in vivo and in vitro systems. Journal of agricultural and food chemistry, 63(41), 9093-9102. https://doi.org/10.1021/acs.jafc.5b03441
Gutierrez, L., Escudero, A., Batlle, R., & Nerin, C. (2009). Effect of mixed antimicrobial agents and flavors in active packaging films. Journal of agricultural and food chemistry, 57(18), 8564-8571. https://doi.org/10.1021/jf901459e
Hemamalini, T., & Dev, V. R. G. (2018). Comprehensive review on electrospinning of starch polymer for biomedical applications. International journal of biological macromolecules, 106, 712-718. https://doi.org/10.1016/j.ijbiomac.2017.08.079
Jiang, S., Li, J.-N., & Jiang, Z.-T. (2010). Inclusion reactions of β-cyclodextrin and its derivatives with cinnamaldehyde in Cinnamomum loureirii essential oil. European Food Research and Technology, 230(4), 543-550. https://doi.org/10.1007/s00217-009-1192-z
Kannappan, S., Jayaraman, T., Rajasekar, P., Ravichandran, M., & Anuradha, C. (2006). Cinnamon bark extract improves glucose metabolism and lipid profile in the fructose-fed rat. Singapore medical journal, 47(10), 858.
Ke, J., Xiao, L., Yu, G., Wu, H., Shen, G., & Zhang, Z. (2019). The study of diffusion kinetics of cinnamaldehyde from corn starch-based film into food simulant and physical properties of antibacterial polymer film. International journal of biological macromolecules, 125, 642-650. https://doi.org/10.1016/j.ijbiomac.2018.12.094
Kim, S. H., Hyun, S. H., & Choung, S. Y. (2006). Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. Journal of ethnopharmacology, 104(1-2), 119-123. https://doi.org/10.1016/j.jep.2005.08.059
Lee, H.-S. (2002). Inhibitory activity of Cinnamomum cassia bark-derived component against rat lens aldose reductase. J Pharm Pharm Sci, 5(3), 226-230.
Li, X., Jin, Z., & Wang, J. (2007). Complexation of allyl isothiocyanate by α-and β-cyclodextrin and its controlled release characteristics. Food Chemistry, 103(2), 461-466. https://doi.org/10.1016/j.foodchem.2006.08.017
Linforth, R., Martin, F., Carey, M., Davidson, J., & Taylor, A. J. (2002). Retronasal transport of aroma compounds. Journal of agricultural and food chemistry, 50(5), 1111-1117. https://doi.org/10.1021/jf011022n
Luo, Q., Cai, Y., Yan, J., Sun, M., & Corke, H. (2004). Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life sciences, 76(2), 137-149. https://doi.org/10.1016/j.lfs.2004.04.056
Mafi, A., Raisi, A., & Aroujalian, A. (2013). Computational fluid dynamics modeling of mass transfer for aroma compounds recovery from aqueous solutions by hydrophobic pervaporation. Journal of Food Engineering, 119(1), 46-55. https://doi.org/10.1016/j.jfoodeng.2013.04.031
Malekjani, N., & Jafari, S. M. (2021). Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Comprehensive Reviews in Food Science and Food Safety, 20(1), 3-47. https://doi.org/10.1111/1541-4337.12660
Mongenot, N., Charrier, S., & Chalier, P. (2000). Effect of ultrasound emulsification on cheese aroma encapsulation by carbohydrates. Journal of agricultural and food chemistry, 48(3), 861-867. https://doi.org/10.1021/jf990494n
Ong, J. J.-X., Steele, C. M., & Duizer, L. M. (2018). Challenges to assumptions regarding oral shear rate during oral processing and swallowing based on sensory testing with thickened liquids. Food Hydrocolloids, 84, 173-180. https://doi.org/10.1016/j.foodhyd.2018.05.043
Paarakh, M. P., Jose, P. A., Setty, C., & Christoper, G. P. (2018). Release kinetics–concepts and applications. Int. J. Pharm. Res. Technol, 8(1), 12-20.
Peppas, N. (1985). Analysis of Fickian and non-Fickian drug release from polymers. Pharmaceutica Acta Helvetiae, 60(4), 110-111.
Peppas, N. A., & Narasimhan, B. (2014). Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. Journal of Controlled Release, 190, 75-81. https://doi.org/10.1016/j.jconrel.2014.06.041
Ployon, S., Morzel, M., & Canon, F. (2017). The role of saliva in aroma release and perception. Food Chemistry, 226, 212-220. https://doi.org/10.1016/j.foodchem.2017.01.055
Ponce, C., Buera, M. P., & Elizalde, B. E. (2010). Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. Journal of Food Engineering, 99(1), 70-75. https://doi.org/10.1016/j.jfoodeng.2010.01.039
Potineni, R. V., & Peterson, D. G. (2008). Mechanisms of flavor release in chewing gum: cinnamaldehyde. Journal of agricultural and food chemistry, 56(9), 3260-3267. https://doi.org/10.1021/jf0727847
Proctor, G., & Shaalan, A. (2021). Disease-induced changes in salivary gland function and the composition of saliva. Journal of dental research, 100(11), 1201-1209. https://doi.org/10.1177/00220345211004842
Ranjbar, A., & Ramezanian, A. (2022). Synergistic effects of modified atmosphere packaging and cinnamaldehyde on bioactive compounds, aerobic mesophilic and psychrophilic bacteria of pomegranate arils during cold storage. Chemical and Biological Technologies in Agriculture, 9(1), 1-12. https://doi.org/10.1186/s40538-022-00290-7
Rendleman, J., Jacob A. (2000). Hydrolytic action of α‐amylase on high‐amylose starch of low molecular mass. Biotechnology and applied biochemistry, 31(3), 171-178. https://doi.org/10.1111/j.1470-8744.2000.tb00570.x
Rubilar, J. F., Cruz, R. M., Zuñiga, R. N., Khmelinskii, I., & Vieira, M. C. (2017). Mathematical modeling of gallic acid release from chitosan films with grape seed extract and carvacrol. International journal of biological macromolecules, 104, 197-203. https://doi.org/10.1016/j.ijbiomac.2017.05.187
Salles, C., Chagnon, M.-C., Feron, G., Guichard, E., Laboure, H., Morzel, M., . . . Yven, C. (2010). In-mouth mechanisms leading to flavor release and perception. Critical reviews in food science and nutrition, 51(1), 67-90. https://doi.org/10.1080/10408390903044693
Steffe, J. F. (1996). Rheological methods in food process engineering. Freeman press.
Strand, B., Gåserød, O., Kulseng, B., Espevik, T., & Skjåk-Bræk, G. (2002). Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties. Journal of microencapsulation, 19(5), 615-630. https://doi.org/10.1080/02652040210144243
Tian, Y., Zhu, Y., Bashari, M., Hu, X., Xu, X., & Jin, Z. (2013). Identification and releasing characteristics of high-amylose corn starch–cinnamaldehyde inclusion complex prepared using ultrasound treatment. Carbohydrate polymers, 91(2), 586-589. https://doi.org/10.1016/j.carbpol.2012.09.008
Voilley, A., Seuvre, A.-M., Gougeon, R., Karbowiak, T., Chassagne, D., & Debeaufort, F. (2011). Transfer of water and active molecules at the interfaces in complex food systems: theoretical and practical aspects. Procedia Food Science, 1, 879-885. https://doi.org/10.1016/j.profoo.2011.09.133
Wilke, C., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE journal, 1(2), 264-270. https://doi.org/10.1002/aic.690010222
Wilke, C., & Lee, C. (1955). Estimation of diffusion coefficients for gases and vapors. Industrial & Engineering Chemistry, 47(6), 1253-1257. https://doi.org/10.1021/ie50546a056
Zhang, W., XU, Y.-c., Guo, F.-j., Meng, Y., & Li, M.-l. (2008). Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chinese Medical Journal, 121(21), 2124-2128. https://doi.org/10.1016/j.foodcont.2015.05.032
CAPTCHA Image
دوره 12، شماره 3
آذر 1402
صفحه 273-290
  • تاریخ دریافت: 10 بهمن 1400
  • تاریخ بازنگری: 03 فروردین 1401
  • تاریخ پذیرش: 18 فروردین 1401