نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه مکانیزاسیون کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

گیاه انزروت از تیرۀ آستراگالوس و خانوادۀ حبوبات است. پراکندگی این گیاه در جنوب غربی آسیا می‌باشد و تاکنون مطالعه‌های منسجمی روی خواص آنتی‌اکسیدانی و ضدمیکروبی این گیاه انجام نشده است. در این تحقیق سعی شده است که عصارۀ قسمت‌های مختلف گیاه انزروت (صمغ، اندام هوایی و ریشه) با استفاده از دو حلال آب و متانول استخراج شود و محتوای ترکیبات فنولی و فلاونوئیدی کل و فعالیت آنتی‌اکسیدانی (1و1-دی‌فنیل-2-پیکریل هیدرازیل (DPPH)، 2و2-آزینو-بیس(3-اتیل بنزوتیازلوین-6-سولفونیک اسید) (ABST)، فعالیت کاهندۀ‌ یون مس (CUPRAC)، فسفومولیبدنم (PMB) و ظرفیت کاهش یون آهن (FRAP)) عصاره‌ها موردبررسی قرار گیرد، ارتباط بین ترکیبات فنولی کل و فعالیت آنتی‌اکسیدانی نیز با آزمون پیرسون بررسی شد. نتایج نشان داد که عصاره‌های استخراج‌شده با حلال متانول دارای ترکیبات زیست‌فعال بالاتر و فعالیت آنتی‌اکسیدانی قوی‌تری هستند. عصارۀ صمغ استخراج‌شده با حلال متانول، بیشترین فعالیت آنتی‌اکسیدانی و نیز بیشترین محتوای فنول کل (1/30±22/30 میلی‌گرم گالیک اسید بر گرم عصاره) و فلاونوئید کل (0/87±11/30 میلی‌گرم رول بر گرم عصاره) داشت که در مقایسه با عصارۀ سایر قسمت‌ها تفاوت معنی‌داری داشت (0/05≤P)، نتایج نشان داد که همبستگی بین ترکیبات فنولی کل و فعالیت آنتی‌اکسیدانی نیز معنی‌دار بود (0/05≤P). باتوجه‌به نتایج، مشخص شد که عصارۀ صمغ انزروت دارای فعالیت ضدمیکروبی می‌باشد و میزان غلظت بازدارندگی و حداقل غلظت کشندگی باکتری کلستریدیوم پرفرنژنس نسبت به باکتری سودوموناس ائروژینوزا کمتر بود. براساس یافته‌های این مطالعه، مشخص شد که صمغ انزروت قابلیت استفاده در صنایع غذایی، دارویی و بهداشتی را دارد.

کلیدواژه‌ها

موضوعات

© 2022, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/)

Abreu, A. C., McBain, A. J., & Simões, M. (2012). Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep, 29(9), 1007-1021. https://doi.org/10.1039/c2np20035j
Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçağ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International journal of food sciences and nutrition, 57(5-6), 292-304. https://doi.org/10.1080/09637480600798132
Arumugam, R., Kirkan, B., & Sarikurkcu, C. (2019). Phenolic profile, antioxidant and enzyme inhibitory potential of methanolic extracts from different parts of Astragalus ponticus Pall. South African Journal of Botany, 120, 268-273. https://doi.org/10.1016/j.sajb.2018.07.002
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food control, 46, 412-429. https://doi.org/10.1016/j.foodcont.2014.05.047Get
Hemeg, H. A., Moussa, I. M., Ibrahim, S., Dawoud, T. M., Alhaji, J. H., Mubarak, A. S., . . . Marouf, S. A. (2020). Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi Journal of Biological Sciences, 27(12), 3221-3227. https://doi.org/10.1016/j.sjbs.2020.08.015
Huang, C., Xu, D., Xia, Q., Wang, P., Rong, C., & Su, Y. (2012). Reversal of P-glycoprotein-mediated multidrug resistance of human hepatic cancer cells by Astragaloside II. Journal of Pharmacy and Pharmacology, 64(12), 1741-1750. https://doi.org/10.1111/j.2042-7158.2012.01549.x
Huang, X., Wang, D., Hu, Y., Lu, Y., Guo, Z., Kong, X., & Sun, J. (2008). Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus. International Journal of Biological Macromolecules, 42(2), 166-171. https://doi.org/10.1016/j.ijbiomac.2007.10.019
Ibrahim, W. A., Marouf, S. A., Erfan, A. M., Nasef, S. A., & El Jakee, J. K. (2019). The occurrence of disinfectant and antibiotic-resistant genes in Escherichia coli isolated from chickens in Egypt. Veterinary world, 12(1), 141. https://doi.org/10.14202/vetworld.2019.141-145
Jaganath, I. B., & Crozier, A. (2010). Dietary flavonoids and phenolic compounds. Plant phenolics and human health: biochemistry, nutrition, and pharmacology, 1, 1-50. https://doi.org/10.1002/9780470531792.ch1
Jaradat, N., Adwan, L., K’aibni, S., Zaid, A. N., Shtaya, M. J., Shraim, N., & Assali, M. (2017). Variability of chemical compositions and antimicrobial and antioxidant activities of Ruta chalepensis leaf essential oils from three Palestinian regions. BioMed research international, 2017. https://doi.org/10.1155/2017/2672689
Kamath, S. D., Arunkumar, D., Avinash, N. G., & Samshuddin, S. (2015). Determination of total phenolic content and total antioxidant activity in locally consumed food stuffs in Moodbidri, Karnataka, India. Advances in Applied Science Research, 6(6), 99-102.
Kang, J.-H., & Song, K. B. (2021). Antimicrobial activity of honeybush (Cyclopia intermedia) ethanol extract against foodborne pathogens and its application in washing fresh-cut Swiss chard. Food control, 121, 107674. https://doi.org/10.1016/j.foodcont.2020.107674
Leng, B., Yuan, F., Dong, X., Wang, J., & Wang, B. (2018). Distribution pattern and salt excretion rate of salt glands in two recretohalophyte species of Limonium (Plumbaginaceae). South African Journal of Botany, 115, 74-80. https://doi.org/10.1016/j.sajb.2018.01.002
Li, X., Qu, L., Dong, Y., Han, L., Liu, E., Fang, S., . . . Wang, T. (2014). A review of recent research progress on the astragalus genus. Molecules, 19(11), 18850-18880. https://doi.org/10.3390/molecules191118850
Lizcano, L. J., Bakkali, F., Ruiz-Larrea, M. B., & Ruiz-Sanz, J. I. (2010). Antioxidant activity and polyphenol content of aqueous extracts from Colombian Amazonian plants with medicinal use. Food Chemistry, 119(4), 1566-1570. https://doi.org/10.1016/j.foodchem.2009.09.043
Locatelli, M., Epifano, F., Genovese, S., Carlucci, G., Končić, M. Z., Kosalec, I., & Kremer, D. (2011). Anthraquinone profile, antioxidant and antimicrobial properties of bark extracts of Rhamnus catharticus and R. orbiculatus. Natural product communications, 6(9), 1275-1280.
Lu, J., Chen, X., Zhang, Y., Xu, J., Zhang, L., Li, Z., . . . He, X. (2013). Astragalus polysaccharide induces anti-inflammatory effects dependent on AMPK activity in palmitate-treated RAW264. 7 cells. International Journal of Molecular Medicine, 31(6), 1463-1470. https://doi.org/10.3892/ijmm.2013.1335
Nguyen Viet, D., Le Ba, V., Nguyen Duy, T., Pham Thi, V. A., Tran Thi, H., Le Canh, V. C., . . . Tuan Anh, H. L. (2021). Bioactive compounds from the aerial parts of Hypericum sampsonii. Natural Product Research, 35(4), 646-648. https://doi.org/10.1080/14786419.2019.1586690
Nosrati, F., Fakheri, B., Solouki, M., Mahdi Nezhad, N., & Valizadeh, M. (2019). Analysis of some phytochemical characteristics of Astragalus fasciculifolius Boiss. in natural habitats of South Sistan and Baluchistan Province, Iran. Iranian Journal of Medicinal and Aromatic Plants Research, 35(1), 68-79. https://doi.org/10.22092/IJMAPR.2019.121991.2327 (in Persian)
Pistelli, L., Giachi, I., Lepori, E., & Bertoli, A. (2003). Further saponins and flavonoids from Astragalus verrucosus Moris. Pharmaceutical biology, 41(8), 568-572. https://doi.org/10.1080/13880200390501370
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019
Ramli, S., Radu, S., Shaari, K., & Rukayadi, Y. (2017). Antibacterial activity of ethanolic extract of Syzygium polyanthum L.(Salam) leaves against foodborne pathogens and application as food sanitizer. BioMed research international, 2017. https://doi.org/10.1155/2017/9024246
Robbins, R. J. (2003). Phenolic acids in foods: an overview of analytical methodology. Journal of agricultural and food chemistry, 51(10), 2866-2887. https://doi.org/10.1021/jf026182t
Sarikurkcu, C., Sahinler, S. S., & Tepe, B. (2020). Astragalus gymnolobus, A. leporinus var. hirsutus, and A. onobrychis: phytochemical analysis and biological activity. Industrial crops and products, 150, 112366. https://doi.org/10.1016/j.indcrop.2020.112366
Sarikurkcu, C., & Zengin, G. (2020). Polyphenol profile and biological activity comparisons of different parts of Astragalus macrocephalus subsp. finitimus from Turkey. Biology, 9(8), 231. https://doi.org/10.3390/biology9080231
Shahid, M., & Rao, N. (2015). New records for the two Fabaceae species from the United Arab Emirates. J. New Biological Reports, 4(3), 207-210.
Shahrani, M., Asgharzadeh, N., Torki, A., Asgharian, S., & Lorigooini, Z. (2021). Astragalus fasciculifolius manna; antinociceptive, anti-inflammatory and antioxidant properties in mice. Immunopathologia Persa, 7(1), e02. https://doi.org/10.34172/ipp.2021.02
Singh, R., Sharma, S., & Sharma, V. (2015). Comparative and quantitative analysis of antioxidant and scavenging potential of Indigofera tinctoria Linn. extracts. Journal of integrative medicine, 13(4), 269-278. https://doi.org/10.1016/S2095-4964(15)60183-2
Son, H.-J., Kang, J.-H., & Song, K. B. (2017). Antimicrobial activity of safflower seed meal extract and its application as an antimicrobial agent for the inactivation of Listeria monocytogenes inoculated on fresh lettuce. LWT-Food Science and Technology, 85, 52-57. https://doi.org/10.1016/j.lwt.2017.06.063
Teng, Z., & Shen, Y. (2015). Research progress of genetic engineering on medicinal plants. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica, 40(4), 594-601.
Vasfilova, E., & Vorob’eva, T. y. (2020). Little-known medicinal plants with a widespectrum of pharmacological action under the conditions of introduction in the Middle Urals. BIO Web of Conferences,
Wang, J., Zhang, Q., Zhang, Z., Song, H., & Li, P. (2010). Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 46(1), 6-12. https://doi.org/10.1016/j.ijbiomac.2009.10.015
WHO. (2019). WHO global report on traditional and complementary medicine 2019. World Health Organization.
Woo, H. J., Kang, J. H., Lee, C. H., & Song, K. B. (2020). Application of Cudrania tricuspidata leaf extract as a washing agent to inactivate Listeria monocytogenes on fresh‐cut romaine lettuce and kale. International Journal of Food Science & Technology, 55(1), 276-282. https://doi.org/10.1111/ijfs.14305
Zengin, G., Uysal, S., Ceylan, R., & Aktumsek, A. (2015). Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Industrial crops and products, 70, 1-6. https://doi.org/10.1016/j.indcrop.2015.03.012
Zhang, H., Shao, Y., Bao, J., & Beta, T. (2015). Phenolic compounds and antioxidant properties of breeding lines between the white and black rice. Food Chemistry, 172, 630-639. https://doi.org/10.1016/j.foodchem.2014.09.118
Zhang, S., Hou, J., Yuan, Q., Xin, P., Cheng, H., Gu, Z., & Wu, J. (2020). Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing. Chemical Engineering Journal, 392, 123775. https://doi.org/10.1016/j.cej.2019.123775
Zhong, Y., & Shahidi, F. (2015). 12 - Methods for the assessment of antioxidant activity in foods11This chapter is reproduced to a large extent from an article in press by the authors in the Journal of Functional Foods. In F. Shahidi (Ed.), Handbook of Antioxidants for Food Preservation (pp. 287-333). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-089-7.00012-9
CAPTCHA Image