درون‌پوشانی آلفا-توکوفرول به روش قالب‌گیری امولسیونی با استفاده از ذرات امولسیون هیدروژل پروتئین آب‌پنیر و یوتا کاراگینان

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه نانوفناوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

چکیده

در پژوهش حاضر از ذرات امولسیون هیدروژل ساخته‌شده به روش قالب‌گیری امولسیونی برای درون‌پوشانی آلفا-توکوفرول استفاده شد. برای ساخت ذرات میکروژل به‌عنوان قالب از امولسیون روغن در آب در روغن استفاده شد. هدف در این پژوهش بررسی اثر جایگزینی بخشی از پروتئین آب‌پنیر با یوتا کاراگینان (0، 0/2 و 0/4 درصد وزنی-وزنی) بر ویژگی‌های امولسیون، ذرات هیدروژل و رهایش آلفا-توکوفرول بود. نتایج نشان داد که واردکردن یوتا کاراگینان در فرمولاسیون باعث افزایش گرانروی ظاهری امولسیون‌های اولیه شد، اندازۀ قطره‌ها از 2/69 میکرومتر در امولسیون حاوی پروتئین آب‌پنیر به‌تنهایی به 2/95 و 2/71 میکرومتر در امولسیون‌های حاوی 0/2 و 0/4 درصد یوتا کاراگینان افزایش یافت. جایگزین‌کردن 0/2 و 0/4 درصد یوتا کاراگینان، پتانسیل زتا را از 43/93- میلی‌ولت به 46/56- و 46/68- میلی‌ولت کاهش داد؛ همچنین باعث کاهش اندازۀ ذرات و کاهش کارایی درون‌پوشانی آلفا-توکوفرول در ذرات امولسیون هیدروژل شد. واردکردن یوتا کاراگینان به فرمولاسیون ذرات هیدروژل، میزان رهایش آلفا-توکوفرول را در شیرۀ معده از 30/36 درصد در ذرات حاوی پروتئین آب‌پنیر به‌تنهایی به 28/90 و 28/22 درصد در ذرات حاوی 0/2 و 0/4 درصد یوتا کاراگینان کاهش داد. نتایج این پژوهش اثبات کرد که جایگزین‌کردن بخشی از پروتئین آب‌پنیر با یوتا کاراگینان قابلیت رهایش کنترل‌شده و تحویل ترکیب زیست‌فعال چربی‌دوست به روده را در ذرات امولسیون هیدروژل افزایش می‌دهد.

کلیدواژه‌ها

موضوعات

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Aguilar, J. M., Cordobés, F., Raymundo, A., & Guerrero, A. (2017). Thermal gelation of mixed egg yolk/kappa-carrageenan dispersions. Carbohydrate Polymers, 161, 172-180. https://doi.org/10.1016/j.carbpol.2017.01.001
Ainis, W. N., Ersch, C., & Ipsen, R. (2018). Partial replacement of whey proteins by rapeseed proteins in heat-induced gelled systems: Effect of pH. Food Hydrocolloids, 77, 397-406. https://doi.org/10.1016/j.foodhyd.2017.10.016
Alavi, F., Emam-Djomeh, Z., Yarmand, M. S., Salami, M., Momen, S., & Moosavi-Movahedi, A. A. (2018). Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids, 85, 267-280. https://doi.org/10.1016/j.foodhyd.2018.07.012
Aserin, A. (2007). Multiple emulsion: technology and applications. John Wiley & Sons.
Bao, H., Ni, Y., Wusigale, Dong, H., & Liang, L. (2020). α-Tocopherol and resveratrol in emulsion-filled whey protein gels: Co-encapsulation and in vitro digestion. International Dairy Journal, 104, 104649. https://doi.org/10.1016/j.idairyj.2020.104649
Basiri, L., Rajabzadeh, G., & Bostan, A. (2017). α-Tocopherol-loaded niosome prepared by heating method and its release behavior. Food Chemistry, 221, 620-628. https://doi.org/10.1016/j.foodchem.2016.11.129
Benichou, A., Aserin, A., & Garti, N. (2007). O/W/O double emulsions stabilized with WPI–polysaccharide conjugates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297(1), 211-220. https://doi.org/10.1016/j.colsurfa.2006.10.048
Chen, L., & Subirade, M. (2006). Alginate–whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials, 27(26), 4646-4654. https://doi.org/10.1016/j.biomaterials.2006.04.037
Cho, Y. H., & McClements, D. J. (2009). Theoretical stability maps for guiding preparation of emulsions stabilized by protein-polysaccharide interfacial complexes. Langmuir, 25(12), 6649-6657. https://doi.org/10.1021/la8006684
Chuah, L. H., De Silva, L., Saravanan, M., & Fu, J. Y. (2016). Preparation and optimization of tocotrienol rich fraction (TRF)-loaded niosomes. Asian Journal of Pharmaceutical Sciences, 11(1), 56-57. https://doi.org/10.1016/j.ajps.2015.10.042
David, S., Wojciechowska, A., Portmann, R., Shpigelman, A., & Lesmes, U. (2020). The impact of food-grade carrageenans and consumer age on the in vitro proteolysis of whey proteins. Food Research International, 130, 108964. https://doi.org/10.1016/j.foodres.2019.108964
Dickinson, E., & Pawlowsky, K. (1997). Effect of ι-Carrageenan on Flocculation, Creaming, and Rheology of a Protein-Stabilized Emulsion. Journal of Agricultural and Food Chemistry, 45(10), 3799-3806. https://doi.org/10.1021/jf970304d
Du, Y.-L., Huang, G.-Q., Wang, H.-O., & Xiao, J.-X. (2018). Effect of high coacervation temperature on the physicochemical properties of resultant microcapsules through induction of Maillard reaction between soybean protein isolate and chitosan. Journal of Food Engineering, 234, 91-97. https://doi.org/10.1016/j.jfoodeng.2018.04.020
Egan, T., Jacquier, J.-C., Rosenberg, Y., & Rosenberg, M. (2013). Cold-set whey protein microgels for the stable immobilization of lipids. Food Hydrocolloids, 31(2), 317-324. https://doi.org/10.1016/j.foodhyd.2012.11.008
Esfanjani, A. F., Jafari, S. M., Assadpoor, E., & Mohammadi, A. (2015). Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. Journal of Food Engineering, 165, 149-155. https://doi.org/10.1016/j.jfoodeng.2015.06.022
Fang, Z., Wusigale, Bao, H., Ni, Y., Choijilsuren, N., & Liang, L. (2019). Partition and digestive stability of α-tocopherol and resveratrol/naringenin in whey protein isolate emulsions. International Dairy Journal, 93, 116-123. https://doi.org/10.1016/j.idairyj.2019.01.017
Feng, W., Yue, C., Wusigale, Ni, Y., & Liang, L. (2018). Preparation and characterization of emulsion-filled gel beads for the encapsulation and protection of resveratrol and α-tocopherol. Food Research International, 108, 161-171. https://doi.org/10.1016/j.foodres.2018.03.035
Gładkowska-Balewicz, I. (2017). Mixed fluid gels formation, structure and rheological properties University of Birmingham]. https://etheses.bham.ac.uk//id/eprint/7263/1/Gladkowska-Balewicz17PhD.pdf
Gu, Y. S., Decker, E. A., & McClements, D. J. (2005). Influence of pH and carrageenan type on properties of β-lactoglobulin stabilized oil-in-water emulsions. Food Hydrocolloids, 19(1), 83-91. https://doi.org/10.1016/j.foodhyd.2004.04.016
Harnsilawat, T., Pongsawatmanit, R., & McClements, D. J. (2006). Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 20(5), 577-585. https://doi.org/10.1016/j.foodhyd.2005.05.005
Hwang, Y.-J., Oh, C., & Oh, S.-G. (2005). Controlled release of retinol from silica particles prepared in O/W/O emulsion: The effects of surfactants and polymers. Journal of Controlled Release, 106(3), 339-349. https://doi.org/10.1016/j.jconrel.2005.05.007
Jones, O. G., Lesmes, U., Dubin, P., & McClements, D. J. (2010). Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin–pectin complexes. Food Hydrocolloids, 24(4), 374-383. https://doi.org/10.1016/j.foodhyd.2009.11.003
Koutina, G., Ray, C. A., Lametsch, R., & Ipsen, R. (2018). The effect of protein-to-alginate ratio on in vitro gastric digestion of nanoparticulated whey protein. International Dairy Journal, 77, 10-18. https://doi.org/10.1016/j.idairyj.2017.09.001
Liang, L., Leung Sok Line, V., Remondetto, G. E., & Subirade, M. (2010). In vitro release of α-tocopherol from emulsion-loaded β-lactoglobulin gels. International Dairy Journal, 20(3), 176-181. https://doi.org/10.1016/j.idairyj.2009.09.008
Liang, L., Tremblay-Hébert, V., & Subirade, M. (2011). Characterisation of the β-lactoglobulin/α-tocopherol complex and its impact on α-tocopherol stability. Food Chemistry, 126(3), 821-826. https://doi.org/10.1016/j.foodchem.2010.12.029
McClements, D. J. (2004). Food Emulsions: Principles, Practices, and Techniques, Second Edition (2nd Edition ed.). Taylor & Francis. https://books.google.com/books?id=wTrzBPbf_WQC
McClements, D. J. (2009). CHAPTER 4 - Biopolymers in Food Emulsions. In S. Kasapis, I. T. Norton, & J. B. Ubbink (Eds.), Modern Biopolymer Science (pp. 129-166). Academic Press. https://doi.org/10.1016/B978-0-12-374195-0.00004-5
McClements, D. J., & Li, Y. (2010). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science, 159(2), 213-228. https://doi.org/10.1016/j.cis.2010.06.010
Mezger, T. G. (2014). The Rheology Handbook (4th Edition ed.). Vincentz Network, Hanover, Germany. https://books.google.com/books?id=iO8-swEACAAJ
Mirzaei, F., & Jafarpour, S. A. (2019). Integrated Encapsulation of Fish Oil and Vitamin E with Complex Coaservation Technique and its Efficiency Optimization by Response Surface Method (RSM). Research and Innovation in Food Science and Technology, 8(1), 53-66. https://doi.org/10.22101/jrifst.2019.04.30.815
Mohammadi, A., Jafari, S. M., Assadpour, E., & Faridi Esfanjani, A. (2016). Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. International Journal of Biological Macromolecules, 82, 816-822. https://doi.org/10.1016/j.ijbiomac.2015.10.025
Nicolai, T., Britten, M., & Schmitt, C. (2011). β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25(8), 1945-1962. https://doi.org/10.1016/j.foodhyd.2011.02.006
Phillips, G. O., & Williams, P. A. (2009). Handbook of hydrocolloids (Second Edition ed.). Elsevier.
Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2021). The progress and application of vitamin E encapsulation – A review. Food Hydrocolloids, 121, 106998. https://doi.org/10.1016/j.foodhyd.2021.106998
Sağlam, D., Venema, P., de Vries, R., Sagis, L. M. C., & van der Linden, E. (2011). Preparation of high protein micro-particles using two-step emulsification. Food Hydrocolloids, 25(5), 1139-1148. https://doi.org/10.1016/j.foodhyd.2010.10.011
Shewan, H. M., & Stokes, J. R. (2013). Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. Journal of Food Engineering, 119(4), 781-792. https://doi.org/10.1016/j.jfoodeng.2013.06.046
Stephen, A. M., & Phillips, G. O. (2006). Food Polysaccharides and Their Applications (2nd Edition ed.). CRC Press. https://doi.org/10.1201/9781420015164
Sung, M.-R., Xiao, H., Decker, E. A., & McClements, D. J. (2015). Fabrication, characterization and properties of filled hydrogel particles formed by the emulsion-template method. Journal of Food Engineering, 155, 16-21. https://doi.org/10.1016/j.jfoodeng.2015.01.007
Tari, Ö., Kara, S., & Pekcan, Ö. (2010). Thermal Phase Transitions of IOTA Carrageenan in CaCl2 Solutions: A Fluorescence Study. Journal of Macromolecular Science, Part B, 50(2), 306-318. https://doi.org/10.1080/00222341003652286
Tolouie, H., Mohtadi Niya, J., Arefhosseini, S. R., & Asghari Jafarabadi, M. (2012). The effect of chitosan coating that enriched with α-tocopherol on lipid oxidation in farmed trout (oncorhynchus mykiss) during refrigerated storage. Research and Innovation in Food Science and Technology, 1(3), 153-164. https://doi.org/10.22101/jrifst.2012.12.20.131
Torres, O., Murray, B., & Sarkar, A. (2016). Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science & Technology, 55, 98-108. https://doi.org/10.1016/j.tifs.2016.07.006
Wang, L., Gao, Y., Li, J., Subirade, M., Song, Y., & Liang, L. (2016). Effect of resveratrol or ascorbic acid on the stability of α-tocopherol in O/W emulsions stabilized by whey protein isolate: Simultaneous encapsulation of the vitamin and the protective antioxidant. Food Chemistry, 196, 466-474. https://doi.org/10.1016/j.foodchem.2015.09.071
Yenilmez, E., Başaran, E., & Yazan, Y. (2011). Release characteristics of vitamin E incorporated chitosan microspheres and in vitro–in vivo evaluation for topical application. Carbohydrate Polymers, 84(2), 807-811. https://doi.org/10.1016/j.carbpol.2010.07.002
Yoshida, K., Sekine, T., Matsuzaki, F., Yanaki, T., & Yamaguchi, M. (1999). Stability of vitamin A in oil-in-water-in-oil-type multiple emulsions. Journal of the American Oil Chemists' Society, 76(2), 1-6. https://doi.org/10.1007/s11746-999-0212-2
Zhang, Z., Zhang, R., Chen, L., Tong, Q., & McClements, D. J. (2015). Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. European Polymer Journal, 72, 698-716. https://doi.org/10.1016/j.eurpolymj.2015.01.013
CAPTCHA Image
دوره 12، شماره 1
خرداد 1402
صفحه 15-28
  • تاریخ دریافت: 03 آذر 1400
  • تاریخ بازنگری: 03 بهمن 1400
  • تاریخ پذیرش: 04 بهمن 1400