Development of Functional Beef Burgers with Pseudocereals and Study of their Physicochemical and Textural Properties

Fereshte Bahmanyar1, Seyede Marzieh Hosseini1, Leila Mirmoghtadaie4*, Saeedeh Shojaee_Aliabadi1*

1- Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
* Corresponding authors (Le_mirmoghtadaie@sbmu.ac.ir)
* Corresponding authors (S_shojaee@sbmu.ac.ir)

Abstract
The objective of this paper is to appraise the quinoa and buckwheat seeds as pseudocereals to develop new beef burgers. In this study, three different formulations were prepared: one control sample with 15% mixture of bread crumb with soy protein, and two samples with 15% quinoa flour (QB) and buckwheat flour (BB), respectively. This replacement did not make significant difference between the different formulations in most of the physicochemical characteristics including moisture content, pH value, frying properties and water activity but emulsion stability and protein content were higher in the control sample than new formulations. Based on the results of texture properties, raw control sample showed significantly harder texture but BB showed harder texture after frying. Moreover, raw quinoa burger had a higher lightness value (L*). A comparison between the QB and BB burger showed significantly increase in protein and fat content, emulsion stability and lightness of QB. In conclusion, the replacing of bread crumb and soy protein mixture by buckwheat and quinoa flours in beef burger, especially by quinoa flour did not cause significant damage to burger properties and might be a suitable strategy to produce a new functional burger with comparable physicochemical and textural properties.

Introduction
Nowadays, the tendency to consume ready-meals is increasing with the change in lifestyle (Abbasi Monjezi et al., 2019). Also, healthy foods have attracted more attention due to increasing the awareness of consumers about the relationship between diet and health (López-Vargas et al., 2014). At the same time, burgers are widely consumed as a meat product (Heck et al., 2017). Moreover, soy protein and gluten as allergen compound are often used in these products which has limited their use in people with allergy and celiac patients (do Prado et al., 2019). Therefore, the most useful and the best way to produce healthy products is to reformulate them to decrease the incidence of chronic disease and reduce allergic reactions (Öztürk-Kerimoğlu et al., 2020). The use of non-meat materials in meat products is also an important factor in maintaining the quality, technological
properties and nutrition of these products (Salarkarimi et al., 2019).

Additionally, quinoa (Chenopodium quinoa Willd) and buckwheat (Fagopyrum esculentum Moench) seeds as the pseudocereals are very noticeable in recent years (Bahmanyar et al., 2021). These pseudocereals are rich in essential amino acids and have high protein content (Öztürk-Kerimoğlu et al., 2020) and has high amounts of dietary fiber, minerals (zinc, iron, copper, magnesium and calcium), vitamins (C, E, B₁ and B₂), polyphenols and flavonoids (quercetin and rutin), (Cai et al., 2016; Lorusso et al., 2017; Park et al., 2016; Vega-Gálvez et al., 2010). Moreover, lack of gluten in buckwheat and quinoa protein makes it useful for celiac patients (Cai et al., 2016; Li & Zhu, 2017).

Therefore, quinoa and buckwheat seeds as pseudocereals with excellent nutritional properties can be suitable ingredients to be used in burgers formulation. Also, removing soy protein as an allergen compound and replacing it with these pseudocereals is a beneficial way to develop functional products. Thus, the main objective of this study was to evaluate the physicochemical and textural properties of functional burger formulation.

Materials and methods

Raw materials and beef burgers preparation

Quinoa and buckwheat seeds were obtained from OAB Company (Tehran, Iran) and were ground with electronic mill (Quadrumat Junior, Brabender, Germany), the final flour was maintained at 4±1 °C. Fresh beef without fat was bought from a butcher shop (Tehran, Iran) and was ground with meat grinder with 5 mm disk.

Three formulations of beef burgers including control sample, quinoa burger (QB) and buckwheat burger (BB) were prepared. Briefly, 60 g of the ground beef was mixed with 1 g spices, 1.5 g salt and 2.5 g onion powder. Afterward to obtain the hydrated flour, in the control sample, about 20 mL water was added to 15 g mixture of soy protein powder and bread crumb. In the samples of QB and BB, 15 g of quinoa or buckwheat flour were used in replace of the mixture of soy protein powder and bread crumb. Then all materials were kneaded by hand for 5 min and were molded. The ingredients of different beef burger formulations are shown in Table (1). Samples were packed in polyethylene covers and kept at -18 °C for the following mentioned analyses; each formulation was prepared in triplicate. Frying process was performed with low oil at 150 °C for 8 min which its internal temperature to get 70-75 °C. The samples were stored at room temperature until the internal temperature to get 25 °C.

Table 1. Ingredients of burgers with addition of quinoa and buckwheat flour (%)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Control</th>
<th>Quinoa burger</th>
<th>Buckwheat burger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef meat</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Water</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Soy protein powder</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bread crumb</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Quinoa flour</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Buckwheat flour</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Onion powder</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Salt</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Spices</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Proximate composition and pH

The Moisture, lipid (Soxhlet), protein and (Kjeldahl) ash percent of raw samples were measured according to AOAC method in triplicate (Horwitz & Latimer, 2005) and the percentage of carbohydrates was obtained by subtracting their total from 100. The pH values of raw burger (mixture of sample and distilled water) were recorded by the pH meter (827 pH Lab Metrohm, Swiss) (Cuong & Chin, 2016).

Emulsion stability

The emulsion stability (ES) of burger batter was obtained by the method described by Ayadi et al. (2009). 10 g of sample were weighed in tubes (W₂) and centrifuged at 11,000 g for 30 min at 4 °C. After, the
precipitated batter weighted \((W_1)\) and ES was calculated according to the following equation:

\[
ES(\%) = \left(\frac{W_1}{W_2}\right) \times 100
\]

(1)

Water activity

Water activity \((a_w)\) of raw burger was determined according the method described by Heck *et al.* (2017) using Water Activity Meter (Rotronic Station Probe HC2-AW -USB Portable, Malaysia).

Frying properties

Samples were fried according to the method described above and frying properties including cooking loss, diameter reduction and shrinkage were measured. The cooking loss was obtained according to Zahid *et al.* (2020) as follows:

\[
\text{Cooking loss (\%)} = \left(\frac{\text{Raw weight}-\text{Fried weight}}{\text{Raw weight}}\right) \times 100
\]

Also, diameter reduction was determined as reported by Park *et al.* (2017) using the following equation:

\[
\text{Diameter reduction (\%)} = \left(\frac{\text{Raw diameter}-\text{Fried diameter}}{\text{Raw diameter}}\right) \times 100
\]

The shrinkage was calculated via following equation as reported by Alakali *et al.* (2010):

\[
\text{Shrinkage (\%)} = \frac{\text{Raw thickness} - \text{Fried thickness} + \left(\frac{\text{Raw diameter} - \text{Fried diameter}}{\text{Raw thickness} + \text{Raw diameter}}\right)}{\times 100}
\]

Texture analysis

Texture profile analysis (TPA) of raw and fried burger was performed according to the methods conformed by Choi *et al.* (2019) and Serdaroglu *et al.* (2018) using a Texture analyzer TA-XT plus (Stable Micro Systems, United Kingdom). Texture parameters such as hardness (N), springiness (mm), cohesiveness, chewiness (N×mm) and gumminess (N) were recorded.

Color

The color parameter of raw and fried burger was measured using a Hunter Lab (Color Flex EZ; USA). The sample color was recorded with three repetitions and three readings from its surface in order to determine the values of lightness \((L^*)\), redness \((a^*)\) and yellowness \((b^*)\) (Sharma & Yadav, 2020).

Statistical analysis

SPSS software version 24 was used to analyze the data. After checking the normality of the data, one-way analysis of variance (ANOVA) and subsequent Duncan's tests \((\alpha= 0.05)\) were applied to determine the significance of differences among burgers. Each formulation was prepared in triplicate and all tests were performed with three repetitions. Finally, the results were expressed as mean values±standard deviation.

Results and discussion

Proximate composition and pH

Table (2) shows proximate composition and pH of the burgers with addition of quinoa and buckwheat flours. There were no significant differences in moisture content among the different treatments. Similarly, Fernández-Diez *et al.* (2016) reported that the partial replacement of fat by boiling quinoa in dry cured sausage did not show significant effect on sample moisture content. The control sample showed slightly higher protein content \((17.48\%)\) compared with other formulations because of using isolated soy protein in the control sample formulation; it also had high ash content. This result confirms the data explained by do Prado *et al.* (2019), who observed higher protein value in soy protein burger as control sample. The fat content of burgers ranged from 1.87 to 2.41%; the highest amount was observed in QB sample. BB represented the highest carbohydrate content. Moreover, no significant differences were observed in the pH value among samples. Also, Fernández-Diez *et al.* (2016) did not observe significant differences in pH value between control sample and dry cured sausage treated with boiled quinoa.
The frying process and the replacement of soy protein replacer did not cause a significant effect on cooking loss and diameter reduction of burger samples. Consistent with these results, Mohamed, Abdel-Naeem & Mohamed (2016) reported that no significant differences were observed in the cooking loss and diameter reduction of the burgers being up to 3.75 g hydrated wheat fiber replaced with meat and fat.

Frying properties

Table (3) shows the effect of replacing quinoa and buckwheat flour on frying properties of beef burgers. The frying parameters including cooking loss, diameter reduction and shrinkage reflect the quality of meat products (Abdel-Naeem & Mohamed, 2016). No significant differences ($P>0.05$) were observed in frying properties of fried burgers. The cooking loss and diameter reduction ranged from 16.22 to 17.21 and 10.80 to 12.56, respectively. These parameters of samples treated with quinoa and buckwheat flours were almost similar to the control sample. Also, the shrinkage value of QB decreased (21.26%) but was not significant. Since, cooking loss and diameter reduction can indicate the amount of moisture and fat releases during the thermal process (Abdel-Naeem & Mohamed, 2016) and shrinkage can reflect the evaporation of water from the surface of the product, these results also can be related to the same ability of the samples to retain moisture. In other words, the amount of moisture and fat release from the samples was almost the same during the frying process and the replacement of soy protein and bread crumb by quinoa and buckwheat flours did not make a significant change in frying properties. Consistent with these results, do Prado et al. (2019) reported that the addition of tannin-free whole sorghum flour as an isolated soy protein replacer did not cause a significant effect on cooking loss and diameter reduction of burger samples.

Also, Carvalho et al. (2019) reported that no significant differences were observed in the cooking loss and diameter reduction of the burgers being up to 3.75 g hydrated wheat fiber replaced with meat and fat.

Emulsion stability and water activity

The results of emulsion stability and water activity of samples batter are summarized in Fig. (1) and (2) respectively. There were significant differences ($P<0.05$) in emulsion stability of different treatments that was higher in control batter (90.76%) than the other samples and lower percentage (82.50%) of emulsion stability was observed in BB. The more stable emulsions are related to water from the network of protein and carbohydrate gels (Choe et al., 2013). Thus, more stable emulsion in control batter could be due to the presence of soy protein isolated and its desirable emulsifying properties which could be increase water absorption. In this context, Senthil et al. (2002) noted that soluble protein in soya flour and its ability to bind the water led to increase the water absorption in the soya flour dough. Also, Tamsen et al. (2018) evaluated amaranth flour as a replacer of wheat flour in chicken nugget and reported maximum emulsion stability of sample with complete replacement of wheat flour by amaranth flour. They stated that this result might be due to the presence of surface active agents, including globulin and polar lipids in amaranth flour and also high emulsifying properties of its proteins.

Table 2. Chemical compositions (g/100 g) and pH of beef burgers

<table>
<thead>
<tr>
<th>Burgers</th>
<th>Moisture</th>
<th>Protein</th>
<th>Fat</th>
<th>Ash</th>
<th>Carbohydrate</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>64.56±0.33</td>
<td>17.48±0.12</td>
<td>2.20±0.37</td>
<td>2.79±0.10</td>
<td>12.82±0.02</td>
<td>5.96±0.01</td>
</tr>
<tr>
<td>QB</td>
<td>64.61±0.12</td>
<td>16.32±0.12</td>
<td>2.41±0.05</td>
<td>2.47±0.08</td>
<td>14.16±0.09</td>
<td>5.94±0.00</td>
</tr>
<tr>
<td>BB</td>
<td>65.02±0.35</td>
<td>15.34±0.13</td>
<td>1.87±0.06</td>
<td>2.36±0.07</td>
<td>14.98±0.23</td>
<td>5.96±0.02</td>
</tr>
</tbody>
</table>

Different letters in a same column show significant different among burger ($P<0.05$) by Duncan test.

Table 3. Frying properties of beef burgers

<table>
<thead>
<tr>
<th>Burgers</th>
<th>Cooking loss %</th>
<th>Diameter reduction %</th>
<th>Shrinkage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>16.22±0.54</td>
<td>12.56±0.31</td>
<td>29.75±3.68</td>
</tr>
<tr>
<td>QB</td>
<td>17.21±1.46</td>
<td>10.80±0.78</td>
<td>21.26±2.51</td>
</tr>
<tr>
<td>BB</td>
<td>16.40±0.19</td>
<td>11.74±0.46</td>
<td>28.20±2.75</td>
</tr>
</tbody>
</table>

Different letters in a same column show significant different among burger ($P<0.05$) by Duncan test.
The comparison of emulsion stability of quinoa and buckwheat batter showed the stability of quinoa emulsion was significantly higher ($P<0.05$) than buckwheat emulsion. This result may be due to higher amounts of protein in QB (16.32%) compared to BB (15.34%).

![Fig. 1. Emulsion stability (%) of beef burgers. Different letters show no significant differences among burger ($P<0.05$) by Duncan test.]

As can be observed in Fig. (2), there were no significant differences ($P>0.05$) in water activity of different burgers. Water activity is recognized as free water in the product that does not bind to other molecules involved in biological, physicochemical as well as spoilage reactions of the product (Raúl et al., 2018). Similar data were reported by Sánchez-Zapata et al. (2010) who did not report a significant difference in the water activity of pork burger treated with tiger nut fiber. Therefore, in the present study, no difference in water activity of different samples could be related to the same activity of meat mixture and fibers.

![Fig. 2. Water activity of beef burgers. Different letters show no significant differences among burger ($P<0.05$) by Duncan test.]

Texture profile analysis (TPA)

The results of texture analysis of raw and fried burgers are presented in Table (4). Comparison of texture profile between raw and fried burgers showed increase of all texture parameters except springiness of fried burgers. In this view, López-Vargas et al. (2014) noticed that the cooked burgers showed increased gumminess, hardness and chewiness and decreased springiness. Thus, according to these results, thermal process caused changes in soluble proteins, myofibrillar proteins and connective tissue of cooked meat texture (López-Vargas et al., 2014).

Table 4. Texture properties of raw and fried beef burgers

<table>
<thead>
<tr>
<th>Burgers</th>
<th>Hardness (N)</th>
<th>Springiness (mm)</th>
<th>Cohesiveness (N×mm)</th>
<th>Chewiness (N×mm)</th>
<th>Gumminess (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>75.67±4.78</td>
<td>0.69±0.15</td>
<td>0.42±0.04</td>
<td>21.73±4.27</td>
<td>31.80±0.83</td>
</tr>
<tr>
<td>QB</td>
<td>51.86±0.35</td>
<td>0.92±0.04</td>
<td>0.53±0.03</td>
<td>23.93±2.09</td>
<td>27.48±1.95</td>
</tr>
<tr>
<td>BB</td>
<td>48.28±1.42</td>
<td>0.96±0.00</td>
<td>0.54±0.02</td>
<td>24.90±0.58</td>
<td>25.90±0.60</td>
</tr>
<tr>
<td>Fried</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>222.52±4.26</td>
<td>0.59±0.01</td>
<td>0.44±0.04</td>
<td>57.53±4.82</td>
<td>97.32±8.40</td>
</tr>
<tr>
<td>QB</td>
<td>251.02±21.90</td>
<td>0.86±0.02</td>
<td>0.70±0.08</td>
<td>151.78±22.57</td>
<td>177.08±25.00</td>
</tr>
<tr>
<td>BB</td>
<td>346.30±12.00</td>
<td>0.80±0.01</td>
<td>0.56±0.02</td>
<td>156.53±10.11</td>
<td>194.92±10.25</td>
</tr>
</tbody>
</table>

Different small and capital letters in a same column show significant difference among raw and fried burger by Duncan test ($P<0.05$), respectively.
Table 5. Color parameters of raw and fried burgers

<table>
<thead>
<tr>
<th>Burgers</th>
<th>Lightness (L*)</th>
<th>Redness (a*)</th>
<th>Yellowness (b*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>41.13±0.30a</td>
<td>8.77±0.20b</td>
<td>20.83±0.35a</td>
</tr>
<tr>
<td>QB</td>
<td>55.38±1.06a</td>
<td>8.63±0.09a</td>
<td>18.74±0.29b</td>
</tr>
<tr>
<td>BB</td>
<td>49.52±0.90b</td>
<td>8.83±0.11a</td>
<td>20.42±0.36a</td>
</tr>
<tr>
<td>Fried</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>35.76±0.56A</td>
<td>7.84±0.19AB</td>
<td>16.79±0.37A</td>
</tr>
<tr>
<td>QB</td>
<td>37.24±5.55A</td>
<td>7.18±0.54B</td>
<td>15.97±0.32A</td>
</tr>
<tr>
<td>BB</td>
<td>32.46±2.20B</td>
<td>8.47±0.61A</td>
<td>13.95±1.10B</td>
</tr>
</tbody>
</table>

Different small and capital letters in the same column show significant differences among raw and fried burger by Duncan test (P<0.05), respectively.

Among raw burgers, the control sample had higher hardness and more gumminess, but no significant difference was observed in chewiness of different raw burgers. All textural parameters of control fried burgers were reduced (P<0.05), except hardness (decreased but not significantly), compared to other fried formulations. These results could be due to from higher protein content of control sample compared to other treatments, which led to more water and oil absorption and thus textural parameter reduction. In this context, Ruiz-Capillas et al. (2012) observed increase in chewiness and hardness with decreasing fat in fermented sausages containing Konjac gel. Moreover, the non-covalent bonds between amino acid of meat myofibrillar proteins, including glutamic acid, aspartic acid and lysine with charged amino acids of quinoa and buckwheat flour led to an increased textural parameter of QB and BB (Cai et al., 2016; Tamsen et al., 2018; Valencia et al., 2009). Contrary to these results, Öztürk-Kerimoğlu et al. (2020) observed that using quinoa in sausages as partial beef fat replacers caused a significant decrease in hardness that because of the increase of free water in the sample with low fat. Therefore, it can be concluded that the use of quinoa as a fat substitute reduced the hardness of meat products, but it uses as a substitute for bread crumb and soy protein powder in fried burgers increased the hardness.

A comparison between the texture properties of raw QB and raw BB showed that there were no significant differences between the textural parameters of these samples (P>0.05). Also, no significant differences were recorded in chewiness and gumminess of fried QB and BB, but the hardness of fried BB increased significantly (P<0.05) compared to fried QB. Since meat products are rich of the protein, interactions between carbohydrate and protein have been an important effect on the product functional properties (Banta et al., 2018). Therefore, harder texture of the BB could be due to its higher carbohydrates content and higher ability of construction of gel network. Similarly, Soltanizadeh & Ghiasi-Esfahani (2015) observed the hardness and compression force of burger containing Aloe vera increased due to a lot of polysaccharides in Aloe vera that could make a weak gel.

Color measurement

The effects of quinoa and buckwheat flour on color parameters of raw and fried beef burgers are summarized in Table (5). The raw control sample showed lower L* (P<0.05) compared to QB and BB. The b* value this sample also increased but was not significant compared to BB .This result may be due to the lower amount of Carbohydrate in the control sample (according to Table (2)). In the same vein, do Prado et al. (2019) investigated the replacement effect of isolated soy protein with tannin and tannin-free whole sorghum flours in burger and observed that the a* and b* values increased in the control sample. They believed that lack of starch in soy protein samples was the reason for these results. Also, in raw QB the L* increased and b* value decreased (P<0.05).

However, these differences did not observe for fried burgers. Comparing the raw and fried burgers exhibited that the L* and b* of all samples decreased while a*
value of burgers increased after cooking because of the maillard and caramelization reactions happened during the thermal process. In this respect, Hunt et al. (1999) reported that water release, myoglobin state changes, and the maillard reaction during the cooking process can be effective in reducing the lightness of cooked meat products. Similarly, do Prado et al. (2019) reported that L* of burgers containing soy protein isolated after cooking was reduced.

Conclusions
This research demonstrates a strategy for producing new meat product formulation using pseudocereals as sources of high quantity and quality protein. The results of this study showed that the replacement of bread crumb and soy protein powder with buckwheat and quinoa flour did not make a significant difference in moisture contain, pH value, frying properties and water activity of the samples. Also, no significant differences were observed in hardness between the fried quinoa burger and control samples. Raw quinoa burger had a higher lightness index (L*) while higher protein content and emulsion stability were observed in control sample compared to other formulations. The comparison between the buckwheat burger and quinoa burger showed that protein and fat content, emulsion stability and lightness significantly increased in quinoa burger compared to buckwheat burger while buckwheat burger had a harder texture. Overall, based on the results, the buckwheat and quinoa flours can be selected as substitute of bread crumb and soy protein in functional beef burger formulation.

Acknowledgements
This study was supported by Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of medical sciences for their sincere cooperation.

Author contributions
Fereshte Bahmanyar: Data collection, Writing the draft of the manuscript; Seyede Marzieh Hosseini: Data analysis, Data analysis and interpretation; Leila Mirmoghtadaie: Revising and editing the manuscript, Supervising the study, Approval of the final version; Saeedeh Shojaee_Aliabadi: Presenting the research idea and study design, Supervising the study.

Conflict of interest
There is no conflict of interest based on the writers.

References

بهبود همیارگ فراسودنند با کمک شب‌غلات و مطالعه خواص فیزیکوشیمیایی و بافتی آنها

فرشته بهمنیار(1)، سید مرجعی حسینی(2)، سید میرمقدادی(3)*، سیده شجاعی علی آبادی(4)*

- گروه علوم و صنایع غذایی، استناد تحقیقات تغذیه و صنایع غذایی کشور، دانشکده علوم تغذیه و صنایع غذایی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

(Le_mirmoghtadaie@sbmu.ac.ir) (S_shojaee@sbmu.ac.ir)

*نویسنده مسئول

چکیده

در این پژوهش، از دانه‌های کیلوی، باکویت به‌عنوان شب‌غلات برای تولید همیارگ فراسودنند استفاده شد. در این مطالعه، سه فرمولاسیون مختلف شامل نمونه شاهد حاوی 15 درصد مخلوط پروتئین سویا و آرد سوخاری و دو نمونه دیگر به‌ترتیب حاوی 15 درصد ارد کیلوی (QB) و آرد باکویت (BB) در آرد جایگزین مخلوط پروتئین سویا و آرد سوخاری گردید. این جایگزینی در سیب‌زایی از ویژگی‌های فیزیکوشیمیایی ازجمله میزان رطوبت، مقدار pH، خواص سرخ‌کردن و فعالیت آب تفاوت می‌نماید. در نمونه‌های مختلف ایجاد شده، افزایش نسبی میزان بیشتر از فرمول‌های جدید بود. براساس نتایج بافتی، نمونه شاهد خام به‌طور قابل‌توجهی سخت‌تر بود اما بعد از سرخ‌شدن نمونه BB بالاتری L* بالاتری، مقدار مشابه بین نمونه‌های طبیعی و ایجادی، باستفاده از پیش‌بینی‌های شکل‌دادنی، در توجه به شاخص L* بالاتری در نمونه BB، این نمونه از نظر شکل‌دادنی و شکل‌گیری بهتر بود. در نهایت، نمونه کیلوی با فعالیت‌های در جودتری، اکتیویت کیلوی و آرد نمونه به‌طور خاص هم‌اراد در نموده است و می‌تواند به‌عنوان یک استراتژی جدید برای تولید همیارگ فراسودنند با خواص فیزیکوشیمیایی و بافتی مناسب در نظر گرفته شود.

واژه‌های کلیدی: باکویت، فرآورده‌های فراسودنند، کیلوی، همیارگ