جداسازی، شناسایی و تعیین حساسیت ضدمیکروبی آرکوباکتر بوتزلری جداشده از لاشۀ مرغ در کشتارگاه‌های شهرستان تنکابن

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه میکروبیولوژی، واحد آیت‌الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

2 گروه میکروبیولوژی، واحد تنکابن، دانشگاه آزاد اسلامی، تنکابن، ایران

3 گروه باکتری‌شناسی، دانشکده دامپزشکی، دانشگاه تخصصی فناوری‌های نوین، آمل، ایران

4 گروه میکروب‌شناسی، دانشکده علوم پایه، واحد اهر، دانشگاه آزاد اسلامی، اهر، ایران

چکیده

آرکوباکتر بوتزلری رایج‌ترین جنس از خانوادۀ کمپیلوباکتریاسه است که به‌عنوان پاتوژن زئونوز و نوظهور شناخته شده است. هدف از این مطالعه جداسازی، شناسایی و تعیین حساسیت ضدمیکروبی سویه‌های آرکوباکتر بوتزلری نسبت به آنتی‌بیوتیک‌هایی است که در درمان بیماری‌های عفونی در انسان و حیوانات استفاده می‌شود. ازاین‌‌رو، 297 نمونه از لاشۀ مرغ در کشتارگاه‌های شهرستان تنکابن جمع‌آوری شد. کُلنی‌های مشکوک با استفاده از تست بیوشیمیایی جداسازی و شناسایی شدند و از تکنیک واکنش زنجیره‌ای پلی‌مراز برای تکثیر ژن 16SrRNA و تأیید نتایج فتوتیپی استفاده شد. الگوی مقاومت آنتی‌بیوتیکی آرکوباکتر بوتزلری نسبت به 16 آنتی‌بیوتیک به روش دیسک دیفیوژن و تعیین حداقل غلظت مهارکنندۀ رشد سویه‌ها نسبت به تتراسایکلین، اریترومایسین و جنتامایسین به روش رقت‌سازی لوله‌ای تعیین گردید. از 36 سویۀ جداسازی و شناسایی‌شده، تمامی جدایه‌ها نسبت به پنی‌سیلین 100 درصد، آمپی‌سیلین 100 درصد و اگزاسیلین 100 درصد مقاومت نشان دادند و همچنین میزان مقاومت به تری‌متوپریم/سولفامتوکسازول 94/4 درصد، سیپروفلوکساسین 94/4 درصد، نالیدیکسیک اسید 91/7 درصد، آزیترومایسین 91/7 درصد و آموکسی‌سیلین 80/6 درصد ارزیابی گردید. از 36 جدایۀ آزمایش‌شده، تمامی ایزوله‌ها نسبت به جنتامایسین 100 درصد حساسیت نشان داده‌اند. 72 درصد سویه‌ها دارای حداقل غلظت مهارکنندگی≥128 (میکروژول بر میلی‌‌لیتر) و حداقل غلظت کشندگی≥256 (میکروژول بر میلی‌‌لیتر) نسبت به آنتی‌بیوتیک تتراسایکلین بودند. همچنین تعداد 10 سویۀ مقاومت دارویی چندگانه (27/77 درصد) و تعداد 24 سویۀ مقاومت دارویی گسترده (66/66 درصد) بوده است. یافته‌های تحقیق حاضر، وجود آرکوباکتر بوتزلری را در لاشه‌های مرغ و شیوع بالای مقاومت ضدمیکروبی نسبت به آنتی‌بیوتیک‌های مختلف را در این ناحیه نشان داد.

کلیدواژه‌ها

  1. Abay, S., Kayman, T., Hizlisoy, H., & Aydin, F. (2012). In vitro antibacterial susceptibility of Arcobacter butzleri isolated from different sources. Journal of Veterinary Medical Science, 74(5), 613-616. doi:https://doi.org/10.1292/jvms.11-0487

    Adam, Z., Whiteduck-Léveillée, K., Cloutier, M., Chen, W., Lewis, C. T., Lévesque, C. A., . . . Talbot, G. (2014). Draft genome sequences of two Arcobacter strains isolated from human feces. Genome announcements, 2(2), e00113-00114. doi:https://10.1128/genomeA.00113-14

    Adesiji, Y., Coker, A., & Oloke, J. (2011). Detection of Arcobacter in feces of healthy chickens in Osogbo, Nigeria. Journal of food protection, 74(1), 119-121. doi:https://doi.org/10.4315/0362-028X.JFP-10-231

    Arias, M. L., Cid, A., & Fernandéz, H. (2011). Arcobacter butzleri: first isolation report from chicken carcasses in costa rica. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 42(2), 703-706. doi:https://doi.org/10.1590/S1517-838220110002000035

    Aski, H. S., Tabatabaei, M., Khoshbakht, R., & Raeisi, M. (2016). Occurrence and antimicrobial resistance of emergent Arcobacter spp. isolated from cattle and sheep in Iran. Comparative immunology, microbiology and infectious diseases, 44, 37-40. doi:https://doi.org/10.1016/j.cimid.2015.12.002

    Atabay, H. I., Corry, J. E., & On, S. L. (1998). Diversity and prevalence of Arcobacter spp. in broiler chickens. J Appl Microbiol, 84(6), 1007-1016. doi:https://doi.org/10.1046/j.1365-2672.1998.00437.x

    Baserisalehi, M., Bahador, N., & Kapadnis, B. (2004). A novel method for isolation of Campylobacter spp. from environmental samples, involving sample processing, and blood‐and antibiotic‐free medium. Journal of Applied Microbiology, 97(4), 853-860. doi:https://doi.org/10.1111/j.1365-2672.2004.02375.x

    Bogantes, E. V., Fallas-Padilla, K. L., Rodriguez-Rodriguez, C. E., Jaramillo, H. F., & Echandi, M. L. A. (2015). Zoonotic species of the genus Arcobacter in poultry from different regions of Costa Rica. Journal of food protection, 78(4), 808-811. doi:https://doi.org/10.4315/0362-028X.JFP-14-494

    Brückner, V., Fiebiger, U., Ignatius, R., Friesen, J., Eisenblätter, M., Höck, M., . . . Gölz, G. (2020). Characterization of Arcobacter strains isolated from human stool samples: results from the prospective German prevalence study Arcopath. Gut pathogens, 12(1), 3. doi:https://doi.org/10.1186/s13099-019-0344-3

    1. (2010). National An timicrobial Resistance Monitoring System for Enteric Bacter ia (NARMS): Human Isolates Fina l Report, 2009.

    Çelik, E., & Otlu, S. (2020). Isolation of Arcobacter spp. and identification of isolates by multiplex PCR from various domestic poultry and wild avian species. Annals of Microbiology, 70(1), 60. doi:https://doi.org/10.1186/s13213-020-01603-7

    Chieffi, D., Fanelli, F., & Fusco, V. (2020). Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2071-2109. doi:https://doi.org/10.1111/1541-4337.12577

    Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews : MMBR, 74(3), 417-433. doi:https://doi.org/10.1128/MMBR.00016-10

    Dekker, D., Eibach, D., Boahen, K. G., Akenten, C. W., Pfeifer, Y., Zautner, A. E., . . . Flieger, A. (2019). Fluoroquinolone-resistant Salmonella enterica, Campylobacter spp., and Arcobacter butzleri from local and imported poultry meat in Kumasi, Ghana. Foodborne pathogens and disease, 16(5), 352-358. doi:https://doi.org/10.1089/fpd.2018.2562

    Ertas, N., Dogruer, Y., Gonulalan, Z., Guner, A., & Ulger, I. (2010). Prevalence of Arcobacter species in drinking water, spring water, and raw milk as determined by multiplex PCR. Journal of food protection, 73(11), 2099-2102. doi:https://doi.org/10.4315/0362-028x-73.11.2099

    Fanelli, F., Di Pinto, A., Mottola, A., Mule, G., Chieffi, D., Baruzzi, F., . . . Fusco, V. (2019). Genomic Characterization of Arcobacter butzleri Isolated From Shellfish: Novel Insight Into Antibiotic Resistance and Virulence Determinants. Frontiers in microbiology, 10, 670-670. doi:https://doi.org/10.3389/fmicb.2019.00670

    Ferreira, S., Luís, Â., Oleastro, M., Pereira, L., & Domingues, F. C. (2019). A meta-analytic perspective on Arcobacter spp. antibiotic resistance. J Glob Antimicrob Resist, 16, 130-139. doi:https://doi.org/10.1016/j.jgar.2018.12.018

    Fisher, J. C., Levican, A., Figueras, M. J., & McLellan, S. L. (2014). Population dynamics and ecology of Arcobacter in sewage. Frontiers in microbiology, 5. doi:https://doi.org/10.3389/fmicb.2014.00525

    Ghaju Shrestha, R., Tanaka, Y., Sherchand, J. B., & Haramoto, E. (2019). Identification of 16S rRNA and Virulence-Associated Genes of Arcobacter in Water Samples in the Kathmandu Valley, Nepal. Pathogens, 8(3). doi:https://doi.org/10.3390/pathogens8030110

    Giacometti, F., Lucchi, A., Di Francesco, A., Delogu, M., Grilli, E., Guarniero, I., . . . Serraino, A. (2015). Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii Circulation in a Dairy Farm and Sources of Milk Contamination. Appl Environ Microbiol, 81(15), 5055-5063. doi:https://doi.org/10.1128/aem.01035-15

    Gilbert, M. J., Duim, B., Zomer, A. L., & Wagenaar, J. A. (2019). Living in Cold Blood: Arcobacter, Campylobacter, and Helicobacter in Reptiles. Front Microbiol, 10, 1086. doi:https://doi.org/10.3389/fmicb.2019.01086

    González, A., Bayas Morejón, I. F., & Ferrús, M. A. (2017). Isolation, molecular identification and quinolone-susceptibility testing of Arcobacter spp. isolated from fresh vegetables in Spain. Food Microbiol, 65, 279-283. doi:https://doi.org/10.1016/j.fm.2017.02.011

    Ho, H. T., Lipman, L. J., & Gaastra, W. (2008). The introduction of Arcobacter spp. in poultry slaughterhouses. Int J Food Microbiol, 125(3), 223-229. doi:http://doi.org/10.1016/j.ijfoodmicro.2008.02.012

    Houf, K., Devriese, L. A., zutter, L. D., Hoof, J. V., & Vandamme, P. (2001). Susceptibility of Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii to Antimicrobial Agents Used in Selective Media. Journal of clinical microbiology, 39(4), 1654-1656. doi:https://doi.org/10.1128/JCM.39.4.1654-1656.2001

    Isidro, J., Ferreira, S., Pinto, M., Domingues, F., Oleastro, M., Gomes, J. P., & Borges, V. (2020). Virulence and antibiotic resistance plasticity of Arcobacter butzleri: Insights on the genomic diversity of an emerging human pathogen. Infection, Genetics and Evolution, 80, 104213. doi:https://doi.org/10.1016/j.meegid.2020.104213

    Iwu, C. D., Ekundayo, T. C., & Okoh, A. I. (2021). A Systematic Analysis of Research on Arcobacter: Public Health Implications from a Food-Environment Interphase Perspective. Foods, 10(7). doi:https://doi.org/10.3390/foods10071673

    Jalava, K., Rintala, H., Ollgren, J., Maunula, L., Gomez-Alvarez, V., Revez, J., . . . Pitkänen, T. (2014). Novel Microbiological and Spatial Statistical Methods to Improve Strength of Epidemiological Evidence in a Community-Wide Waterborne Outbreak. PLoS One, 9(8), e104713. doi:https://doi.org/10.1371/journal.pone.0104713

    Kayman, T., Abay, S., Hizlisoy, H., Atabay, H., Diker, K. S., & Aydin, F. (2012). Emerging pathogen Arcobacter spp. in acute gastroenteritis: molecular identification, antibiotic susceptibilities and genotyping of the isolated arcobacters. J Med Microbiol, 61(Pt 10), 1439-1444. doi:https://doi.org/10.1099/jmm.0.044594-0

    Kim, N. H., Park, S. M., Kim, H. W., Cho, T. J., Kim, S. H., Choi, C., & Rhee, M. S. (2019). Prevalence of pathogenic Arcobacter species in South Korea: Comparison of two protocols for isolating the bacteria from foods and examination of nine putative virulence genes. Food microbiology, 78, 18-24. doi:https://doi.org/10.1016/j.fm.2018.09.008

    Laishram, M., Rathlavath, S., Lekshmi, M., Kumar, S., & Nayak, B. B. (2016). Isolation and characterization of Arcobacter spp. from fresh seafood and the aquatic environment. Int J Food Microbiol, 232, 87-89. doi:https://doi.org/10.1016/j.ijfoodmicro.2016.05.018

    Langton, K. P., Henderson, P. J. F., & Herbert, R. B. (2005). Antibiotic resistance: multidrug efflux proteins, a common transport mechanism? Natural product reports, 22(4), 439-451. doi:https://doi.org/10.1039/B413734P

    Levican, A., Rubio-Arcos, S., Martinez-Murcia, A., Collado, L., & Figueras, M. J. (2015). Arcobacter ebronensis sp. nov. and Arcobacter aquimarinus sp. nov., two new species isolated from marine environment. Systematic and applied microbiology, 38(1), 30-35. doi:https://doi.org/10.1016/j.syapm.2014.10.011

    Noto, A. M. D., Sciortino, S., Cardamone, C., Ciravolo, C., Napoli, C., Alio, V., . . . Costa, A. (2018). Detection of Arcobacter spp. in food products collected from Sicilia region: A preliminary study. Italian journal of food safety, 7(2), 7171-7171. doi:https://doi.org/10.4081/ijfs.2018.7171

    Okeke, I. N., Klugman, K. P., Bhutta, Z. A., Duse, A. G., Jenkins, P., O'Brien, T. F., . . . Laxminarayan, R. (2005). Antimicrobial resistance in developing countries. Part II: strategies for containment. Lancet Infect Dis, 5(9), 568-580. doi:https://doi.org/10.1016/s1473-3099(05)70217-6

    Pasticci, M. B., Moretti, A., Stagni, G., Ravasio, V., Soavi, L., Raglio, A., . . . Baldelli, F. (2011). Bactericidal activity of oxacillin and glycopeptides against Staphylococcus aureus in patients with endocarditis: Looking for a relationship between tolerance and outcome. Annals of clinical microbiology and antimicrobials, 10(1), 26. doi:https://doi.org/10.1186/1476-0711-10-26

    Petersen, R. F., Harrington, C. S., Kortegaard, H. E., & On, S. L. (2007). A PCR-DGGE method for detection and identification of Campylobacter, Helicobacter, Arcobacter and related Epsilobacteria and its application to saliva samples from humans and domestic pets. J Appl Microbiol, 103(6), 2601-2615. doi:https://doi.org/10.1111/j.1365-2672.2007.03515.x

    Rahimi, E. (2014). Prevalence and antimicrobial resistance of Arcobacter species isolated from poultry meat in Iran. Br Poult Sci, 55(2), 174-180. doi:https://doi.org/10.1080/00071668.2013.878783

    Ramees, T. P., Dhama, K., Karthik, K., Rathore, R. S., Kumar, A., Saminathan, M., . . . Singh, R. K. (2017). Arcobacter: an emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control - a comprehensive review. Vet Q, 37(1), 136-161. doi:https://doi.org/10.1080/01652176.2017.1323355

    Rathlavath, S., Kohli, V., Singh, A. S., Lekshmi, M., Tripathi, G., Kumar, S., & Nayak, B. B. (2017). Virulence genotypes and antimicrobial susceptibility patterns of Arcobacter butzleri isolated from seafood and its environment. Int J Food Microbiol, 263, 32-37. doi:https://doi.org/10.1016/j.ijfoodmicro.2017.10.005

    Shah, A. H., Saleha, A. A., Zunita, Z., Murugaiyah, M., Aliyu, A. B., & Jafri, N. (2013). Prevalence, distribution and antibiotic resistance of emergent Arcobacter spp. from clinically healthy cattle and goats. Transbound Emerg Dis, 60(1), 9-16. doi:https://doi.org/10.1111/j.1865-1682.2012.01311.x

    Šilha, D., Pejchalová, M., & Šilhová, L. (2017). Susceptibility to 18 drugs and multidrug resistance of Arcobacter isolates from different sources within the Czech Republic. J Glob Antimicrob Resist, 9, 74-77. doi:https://doi.org/10.1016/j.jgar.2017.01.006

    Smith, K., Bender, J., & Osterholm, M. (2000). Antimicrobial resistance in animals and relevance to human in animals and relevance to human infections. Campylobacter, 2nd edn. Washington DC: ASM.

    Snelling, W. J., Matsuda, M., Moore, J. E., & Dooley, J. S. G. (2006). Under the Microscope: Arcobacter. Letters in applied microbiology, 42(1), 7-14. doi:https://doi.org/10.1111/j.1472-765X.2005.01841.x

    Sousa, V. C. G. (2017). The role of phytochemicals in Arcobacter butzleri resistance. (Doctoral dissertation), Universidade da Beira Interior (Portugal), Retrieved from https://ubibliorum.ubi.pt/bitstream/10400.6/6392/1/5829_11861.pdf

    Talay, F., Molva, C., & Atabay, H. I. (2016). Isolation and identification of Arcobacter species from environmental and drinking water samples. Folia microbiologica, 61(6), 479-484. doi:https://doi.org/10.1007/s12223-016-0460-0

    ÜNVER, A., Atabay, H. I., ŞAHİN, M., & ÇELEBİ, Ö. (2013). Antimicrobial susceptibilities of various Arcobacter species. Turkish Journal of Medical Sciences, 43(4), 548-552. doi:https://doi.org/10.3906/sag-1207-115

    Vandenberg, O., Houf, K., Douat, N., Vlaes, L., Retore, P., Butzler, J.-P., & Dediste, A. (2006). Antimicrobial susceptibility of clinical isolates of non-jejuni/coli campylobacters and arcobacters from Belgium. Journal of antimicrobial chemotherapy, 57(5), 908-913. doi:https://doi.org/10.1093/jac/dkl080

    Verma, M., Joshi, N., Rathore, R., & Mohan, H. (2015). Detection of Arcobacter spp in poultry, pigs, their meat and environment samples by conventional and PCR assays. The Indian Journal of Animal Sciences, 85(9), 954-957.

    Zacharow, I., Bystroń, J., Wałecka-Zacharska, E., Podkowik, M., & Bania, J. (2015). Prevalence and antimicrobial resistance of Arcobacter butzleri and Arcobacter cryaerophilus isolates from retail meat in Lower Silesia region, Poland. Pol J Vet Sci, 18(1), 63-69. doi:10.1515/pjvs-2015-0008

    Zhang, X., Alter, T., & Gölz, G. (2019). Characterization of Arcobacter spp. isolated from retail seafood in Germany. Food microbiology, 82, 254-258. doi:https://doi.org/10.1016/j.fm.2019.02.010

CAPTCHA Image
دوره 11، شماره 1
خرداد 1401
صفحه 83-94
  • تاریخ دریافت: 19 بهمن 1400
  • تاریخ بازنگری: 29 فروردین 1401
  • تاریخ پذیرش: 31 فروردین 1401