نوع مقاله : مقاله کامل پژوهشی
نویسندگان
گروه فیزیک، انستیتو علم و فناوری پریار مانیامای (دانشگاهی)، پریار نگر، والام، تانجاور-613403، هند
چکیده
در پژوهش حاضر، یک خشککن خورشیدی حرارتی فتوولتائیک ترکیبی همرفتی اجباری (PV-T) با کمک یک جمعکنندۀ لولۀ تخلیه (ETC) برای بررسی خشکشدن لایۀ نازک برشهای سیبزمینی راهاندازی شده است. آزمایش خشککردن با روش سنتی خشککردن خورشیدی بدون سیستم PV-T تحت شرایط هواشناسی تانجاور، تامیلنادو مقایسه شده است. میزان رطوبت اولیۀ برشهای سیبزمینی مورد استفاده برای مطالعۀ 91 درصد (wb) است. آزمایش خشککردن در سطوح مختلف دمای هوا 50، 55 و 60 درجۀ سانتیگراد انجام شد. 9 مدل عددی برای مطالعۀ سینتیک خشکشدن برشهای سیبزمینی تیمارنشده استفاده میشود. با استفاده از آزمون آماری IBM SPSS (نسخۀ 23)، تحلیل رگرسیون غیرخطی برای تخمین ضریب همبستگی (R2)، کای دو کاهشیافته (χ2) و ریشۀ میانگین مربعات خطا (RMSE) انجام شد. مدل توسعهیافته توسط Midilli و همکاران، مناسبترین مدل برای توصیف رفتار خشککردن لایۀ نازک برشهای سیبزمینی در خشککن هیبریدی است. نفوذ رطوبت مؤثر (Deff) تعیینشده با استفاده از قانون دوم انتشار فیک از 8-10×2/12463 تا 8-10×2/79233 مترمربع بر ثانیه متغیر بود. انرژی فعالسازی (Ea) تعیینشده با استفاده از معادلۀ آرنیوس 16/4276 کیلوژول بر مول برای خشککردن برشهای سیبزمینی است.
کلیدواژهها
- انرژی فعالسازی
- جمعکنندۀ لولۀ تخلیه
- خشککن خورشیدی حرارتی فتوولتائیک ترکیبی
- سینتیک خشککردن لایۀ نازک
- نفوذ رطوبت مؤثر
موضوعات
© 2022, Research Institute of Food Science and Technology. All rights reserved.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/)
Amiri Chayjan, R. (2012). Modeling Some Drying Characteristics of High Moisture Potato Slices in Fixed, Semi Fluidized and Fluidized Bed Conditions. Journal of Agricultural Science and Technology, 14(6), 1229-1241. https://doi.org/dor:20.1001.1.16807073.2012.14.6.15.5
Anabel, F., Celia, R., Germán, M., & Rosa, R. (2018). Determination of effective moisture diffusivity and thermodynamic properties variation of regional wastes under different atmospheres. Case Studies in Thermal Engineering, 12, 248-257. https://doi.org/10.1016/j.csite.2018.04.015
Azimi-Nejadian, H., & Hoseini, S. S. (2019). Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat and Mass Transfer, 55(10), 2921-2930. https://doi.org/10.1007/s00231-019-02633-x
Bahammou, Y., Tagnamas, Z., Lamharrar, A., & Idlimam, A. (2019). Thin-layer solar drying characteristics of Moroccan horehound leaves (Marrubium vulgare L.) under natural and forced convection solar drying. Solar Energy, 188, 958-969. https://doi.org/10.1016/j.solener.2019.07.003
Bakal, S. B., Sharma, G. P., Sonawane, S. P., & Verma, R. C. (2012). Kinetics of potato drying using fluidized bed dryer. J Food Sci Technol, 49(5), 608-613. https://doi.org/10.1007/s13197-011-0328-x
Beigi, M. (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology, 36, 145-150. https://doi.org/10.1590/1678-457X.0068
Beigi, M. (2017). Numerical simulation of potato slices drying using a two-dimensional finite element model. Chemical Industry and Chemical Engineering Quarterly, 23(3), 431-440. https://doi.org/10.2298/CICEQ160530057B
Bhardwaj, A. K., Kumar, R., & Chauhan, R. (2019). Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region. Solar Energy, 177, 395-407. https://doi.org/10.1016/j.solener.2018.11.007
Chandra, A., Kumar, S., Tarafdar, A., & Nema, P. K. (2021). Ultrasonic and osmotic pretreatments followed by convective and vacuum drying of papaya slices. Journal of the Science of Food and Agriculture, 101(6), 2264-2272. https://doi.org/10.1002/jsfa.10847
Chasiotis, V., Tsakirakis, A., Termentzi, A., Machera, K., & Filios, A. (2022). Drying and quality characteristics of Cannabis sativa L. inflorescences under constant and time-varying convective drying temperature schemes. Thermal Science and Engineering Progress, 28, 101076. https://doi.org/10.1016/j.tsep.2021.101076
Darvishi, H. (2012). Energy consumption and mathematical modeling of microwave drying of potato slices. Agricultural Engineering International: CIGR Journal, 14(1), 94-102.
Darvishi, H., Asl, A. R., Asghari, A., & Gazori, G. (2013). Mathematical modeling, moisture diffusion, energy consumption and efficiency of thin layer drying of potato slices. Journal of Food Processing and Technology, 4(3), 1-6.
Doymaz, İ. (2011). Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat and Mass Transfer, 47(3), 277-285. https://doi.org/10.1007/s00231-010-0722-3
Doymaz, İ. (2012). Drying of potato slices: Effect of pretreatments and mathematical modeling. Journal of Food Processing and Preservation, 36(4), 310-319. https://doi.org/10.1111/j.1745-4549.2011.00594.x
Ezeanya, N. C. (2018). Modeling of thin-layer solar drying kinetics of cassava noodles (tapioca). Agricultural Engineering International: CIGR Journal, 20(1), 193-200.
Felizardo, M. P., Merlo, G. R. F., & Maia, G. D. (2021). Modeling drying kinetics of Jacaranda mimosifolia seeds with variable effective diffusivity via diffusion model. Biosystems Engineering, 205, 234-245. https://doi.org/10.1016/j.biosystemseng.2021.03.008
Ferreira, J. P. d. L., Castro, D. S. d., Moreira, I. d. S., Silva, W. P. d., de Figueirêdo, R. M., & Queiroz, A. J. d. M. (2020). Convective drying kinetics of osmotically pretreated papaya cubes. Revista Brasileira de Engenharia Agrícola e Ambiental, 24, 200-208. https://doi.org/10.1590/1807-1929/agriambi.v24n3p200-208
Gupta, A., Biswas, A., Das, B., & Reddy, B. V. (2022). Development and testing of novel photovoltaic-thermal collector-based solar dryer for green tea drying application. Solar Energy, 231, 1072-1091. https://doi.org/10.1016/j.solener.2021.12.030
Gupta, A., Das, B., & Biswas, A. (2021). Performance analysis of stand-alone solar photovoltaic thermal dryer for drying of green chili in hot-humid weather conditions of North-East India. Journal of Food Process Engineering, 44(6), e13701. https://doi.org/10.1111/jfpe.13701
Gupta, A., Das, B., Biswas, A., & Mondol, J. D. (2022). An environmental and economic evaluation of solar photovoltaic thermal dryer. International Journal of Environmental Science and Technology, 19(11), 10773-10792. https://doi.org/10.1007/s13762-021-03739-8
Gupta, A., Das, B., Biswas, A., & Mondol, J. D. (2022). Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying. Renewable Energy, 188, 1008-1021. https://doi.org/10.1016/j.renene.2022.02.090
Gupta, A., Das, B., & Mondol, J. D. (2022). Experimental and theoretical performance analysis of a hybrid photovoltaic-thermal (PVT) solar air dryer for green chillies. International Journal of Ambient Energy, 43(1), 2423-2431. https://doi.org/10.1080/01430750.2020.1734658
Hafezi, N., Sheikhdavoodi, M. J., & Sajadiye, S. M. (2015). The effect of drying kinetic on shrinkage and colour of potato slices in the vacuum-infrared drying method. International Journal of Agricultural and Food Research, 4(1), 24-31.
Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79(1), 47-56. https://doi.org/10.1016/j.jfoodeng.2006.01.025
Hendorson, S. (1961). Grain drying theory (I) temperature effect on drying coefficient. Journal of agricultural engineering research, 6(3), 169-174. https://doi.org/10.11357/jsam1937.62.5_104
Inyang, U. E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic models for drying techniques-food materials. Advances in Chemical Engineering and Science, 8(02), 27.
Jomlapelatikul, A., Wiset, L., Duangkhamchan, W., & Poomsa-ad, N. (2016). Model-based investigation of heat and mass transfer for selecting optimum intermediate moisture content in stepwise drying. Applied Thermal Engineering, 107, 987-993. https://doi.org/10.1016/j.applthermaleng.2016.07.064
Karathanos, V. T. (1999). Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39(4), 337-344. https://doi.org/10.1016/S0260-8774(98)00132-0
Kavak Akpinar, E., Midilli, A., & Bicer, Y. (2005). Energy and exergy of potato drying process via cyclone type dryer. Energy Conversion and Management, 46(15), 2530-2552. https://doi.org/10.1016/j.enconman.2004.12.008
Kaveh, M., Rasooli Sharabiani, V., Amiri Chayjan, R., Taghinezhad, E., Abbaspour-Gilandeh, Y., & Golpour, I. (2018). ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Information Processing in Agriculture, 5(3), 372-387. https://doi.org/10.1016/j.inpa.2018.05.003
Komolafe, C. A., Ojediran, J. O., Ajao, F. O., Dada, O. A., Afolabi, Y. T., Oluwaleye, I. O., & Alake, A. S. (2019). Modelling of moisture diffusivity during solar drying of locust beans with thermal storage material under forced and natural convection mode. Case Studies in Thermal Engineering, 15, 100542. https://doi.org/10.1016/j.csite.2019.100542
Komolafe, C. A., Oluwaleye, I. O., Adejumo, A. O. D., Waheed, M. A., & Kuye, S. I. (2018). Determination of moisture diffusivity and activation energy in the convective drying of fish. International Journal of Heat and Technology, 36(4), 1262-1267.
Lee, J. H., & Kim, H. J. (2009). Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices. LWT - Food Science and Technology, 42(1), 180-186. https://doi.org/10.1016/j.lwt.2008.05.017
Lin, Y.-P., Tsen, J.-H., & King, V. A.-E. (2005). Effects of far-infrared radiation on the freeze-drying of sweet potato. Journal of Food Engineering, 68(2), 249-255. https://doi.org/10.1016/j.jfoodeng.2004.05.037
Lingayat, A., & Chandramohan, V. P. (2021). Numerical investigation on solar air collector and its practical application in the indirect solar dryer for banana chips drying with energy and exergy analysis. Thermal Science and Engineering Progress, 26, 101077. https://doi.org/10.1016/j.tsep.2021.101077
Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97. https://doi.org/10.1016/0260-8774(95)00062-3
Markowski, M., Bondaruk, J., & Błaszczak, W. (2009). Rehydration Behavior of Vacuum-Microwave-Dried Potato Cubes. Drying Technology, 27(2), 296-305. https://doi.org/10.1080/07373930802606600
Marwaha, R., Dinesh, K., Singh, S., & Pandey, S. (2009). Chipping and nutritional qualities of Indian and exotic potato processing varieties stored under different conditions. Journal of Food Science and Technology (Mysore), 46(4), 354-358.
Meziane, S. (2011). Drying kinetics of olive pomace in a fluidized bed dryer. Energy Conversion and Management, 52(3), 1644-1649. https://doi.org/10.1016/j.enconman.2010.10.027
Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864
Mirzaee, E., Rafiee, S., Keyhani, A., & Emam-Djomeh, Z. (2009). Determining of moisture diffusivity and activation energy in drying of apricots. Research in Agricultural Engineering, 55(3), 114-120. https://doi.org/10.17221/8/2009-RAE
Mugi, V. R., & Chandramohan, V. P. (2021). Shrinkage, effective diffusion coefficient, surface transfer coefficients and their factors during solar drying of food products – A review. Solar Energy, 229, 84-101. https://doi.org/10.1016/j.solener.2021.07.042
Naderinezhad, S., Etesami, N., Poormalek Najafabady, A., & Ghasemi Falavarjani, M. (2016). Mathematical modeling of drying of potato slices in a forced convective dryer based on important parameters. Food Sci Nutr, 4(1), 110-118. https://doi.org/10.1002/fsn3.258
Olanipekun, B. F., Tunde-Akintunde, T. Y., Oyelade, O. J., Adebisi, M. G., & Adenaya, T. A. (2015). Mathematical Modeling of Thin-Layer Pineapple Drying. Journal of Food Processing and Preservation, 39(6), 1431-1441. https://doi.org/10.1111/jfpp.12362
Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2018). Modelling the mid-infrared drying of sweet potato: kinetics, mass and heat transfer parameters, and energy consumption. Heat and Mass Transfer, 54(10), 2917-2933. https://doi.org/10.1007/s00231-018-2338-y
Panchal, J. B., Champawat, P. S., Mudgal, V. D., & Jain, S. K. (2019). Effect of different pretreatments and temperature on drying characteristics of sweet Potato. International Journal of Chemical Studies, 7(3), 3704-3711. https://www.chemijournal.com/archives/2019/vol7issue3/PartBI/7-3-9-291.pdf
Pimpaporn, P., Devahastin, S., & Chiewchan, N. (2007). Effects of combined pretreatments on drying kinetics and quality of potato chips undergoing low-pressure superheated steam drying. Journal of Food Engineering, 81(2), 318-329. https://doi.org/10.1016/j.jfoodeng.2006.11.009
- Verma, L., A. Bucklin, R., B. Endan, J., & T. Wratten, F. (1985). Effects of Drying Air Parameters on Rice Drying Models. Transactions of the ASAE, 28(1), 296-0301. https://doi.org/10.13031/2013.32245
Reyes, A., Cerón, S., Zúñiga, R., & Moyano, P. (2007). A comparative study of microwave-assisted air drying of potato slices. Biosystems Engineering, 98(3), 310-318. https://doi.org/10.1016/j.biosystemseng.2007.07.006
Reyes, A., Moyano, P., & Paz, J. (2007). Drying of Potato Slices in a Pulsed Fluidized Bed. Drying Technology, 25(4), 581-590. https://doi.org/10.1080/07373930701227011
Rizvi, S. S. H. (1995). Chapter 6-Thermodynamic properties of foods in dehydration. In R. M.A & R. S.S.H. (Eds.), Engineering Properties of Foods (2nd ed., pp. 223-309). Marcel Dekker, Inc., New York.
Saravacos, G. D. (2005). Chapter 8-Mass Transfer Properties of Foods In M. A. Rao, S. S. H. Rizvi, & A. K. Datta (Eds.), Engineering Properties of Foods (3rd ed., pp. 327-373). CRC Press. https://doi.org/10.1201/9781420028805
Sengar, S., Mohod, A., & Khandetod, Y. (2012). Experimental evaluation of solar dryer for kokam fruit. Global Journal of Science Frontier Research Agriculture and Biology, 12(3), 83-89.
Shi, X., Yang, Y., Li, Z., Wang, X., & Liu, Y. (2020). Moisture transfer and microstructure change of banana slices during contact ultrasound strengthened far-infrared radiation drying. Innovative Food Science & Emerging Technologies, 66, 102537. https://doi.org/10.1016/j.ifset.2020.102537
Srikiatden, J., & Roberts, J. S. (2006). Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying. Journal of Food Engineering, 74(1), 143-152. https://doi.org/10.1016/j.jfoodeng.2005.02.026
Srivastava, A. K., Shukla, S. K., & Singh, U. K. (2015). Modeling and Evaluation of Thermal Diffusivity and Activation Energy of Potato slices in Forced Convection Multi Tray Solar Dryer. American Journal of Food Science and Technology, 3(2), 27-32. https://doi.org/10.12691/ajfst-3-2-1
Subramanian, C. V., Neelamegam, P., & Sundari, A. U. (2014). Drying Kinetics of Muscat Grapes in a Solar Drier with Evacuated Tube Collector. International Journal of Engineering, 27(5), 811-818. https://www.ije.ir/article_72314_074632f3d19751e66ed886af43476019.pdf
Sundari, A. U., & Subramanian, C. V. (2017). Comparative study of solar drying characteristics and thin-layer mathematical modelling of mango and cluster beans in two types of solar driers. International Journal of Latest Engineering Research and Applications, ISSN, 2(11), 49-58.
Sundari, A. U., & Veeramanipriya, E. (2017). A review of solar dryers for drying agricultural products. Indian Journal of Scientific Research, 14(1), 311-317.
Torki-Harchegani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., Sadeghi, M., & Tohidi, M. (2016). Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat and Mass Transfer, 52(2), 281-289. https://doi.org/10.1007/s00231-015-1546-y
Veeramanipriya, E., & Sundari, A. R. U. (2021). Performance evaluation of hybrid photovoltaic thermal (PVT) solar dryer for drying of cassava. Solar Energy, 215, 240-251. https://doi.org/10.1016/j.solener.2020.12.027
Veeramanipriya, E., Sundari, A. R. U., & Monisha, E. (2020). Numerical Analysis of Thin Layer Drying Kinetics of Untreated Carrot Slices using Photovoltaic Thermal Solar Dryer. International Journal of Scientific & Technology Research, 9(6), 39-45.
Veeramanipriya, E., & Sundari, A. U. (2019). Drying kinetics of forced convection solar dryer for fruit drying. Int. J. Recent Technol. Eng, 7, 323-327.
Veeramanipriya, E., Sundari, A. U., & Asaithambi, R. (2019). Numerical Modelling of Drying Kinetics of Banana Flowers using Natural and Forced Convection Dryers. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication, 8(10), 4193-4197. https://doi.org/10.35940/ijitee.J1057.0881019
Vega-Gálvez, A., Miranda, M., Díaz, L. P., Lopez, L., Rodriguez, K., & Di Scala, K. (2010). Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour Technol, 101(19), 7265-7270. https://doi.org/10.1016/j.biortech.2010.04.040
Wang, G. Y., & Singh, R. P. (1978). Single layer drying equation for rough rice. ASAE Paper.
Yağcıoğlu, A., Değirmencioğlu, A., & Çağatay, F. (1999). Drying characteristics of laurel leaves under different drying conditions. 7th Int Congress on Agricultural Mechanization and Enerdy,
ارسال نظر در مورد این مقاله