Thin Layer Modeling and Solar Drying Characteristics of Forced Convective Hybrid Photovoltaic Thermal (PV-T) Solar Dryer Assisted with Evacuated Tube Collector for Drying of Untreated Potato Slices

Document Type : Original Paper

Authors

Physics Department, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Periyar Nagar, Vallam, Thanjavur-613403, India

Abstract

In the present work, a forced convective hybrid photovoltaic thermal (PV-T) solar dryer assisted with an evacuated tube collector (ETC) is set up to investigate the thin layer drying of potato slices. The drying experiment is compared with the traditional sun drying method without PV-T system under the meteorological conditions of Thanjavur, Tamilnadu. The initial moisture content of potato slices used for the study is 91% (wb). The drying experiment was carried out at different air temperature levels of 50, 55 and 60 °C. Nine numerical models are used to study the drying kinetics of untreated potato slices. Using IBM SPSS 23 statistical package, non-linear regression analysis was performed to estimate correlation coefficient (R2), reduced chi-square (χ2) and root mean square error (RMSE). The model developed by Midilli et al., is the most appropriate one to describe potato slices thin layer drying behavior in a hybrid dryer. The effective moisture diffusivity (Deff) determined using Fick’s second law of diffusion was found to vary from 2.12463×10-8 to 2.79233×10-8 m2/s. The activation energy (Ea) determined using the Arrhenius equation was found to be 16.4276 KJ/mol for drying of potato slices.

Keywords

Main Subjects

© 2022, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/)

  1. Amiri Chayjan, R. (2012). Modeling Some Drying Characteristics of High Moisture Potato Slices in Fixed, Semi Fluidized and Fluidized Bed Conditions. Journal of Agricultural Science and Technology, 14(6), 1229-1241. https://doi.org/dor:20.1001.1.16807073.2012.14.6.15.5

    Anabel, F., Celia, R., Germán, M., & Rosa, R. (2018). Determination of effective moisture diffusivity and thermodynamic properties variation of regional wastes under different atmospheres. Case Studies in Thermal Engineering, 12, 248-257. https://doi.org/10.1016/j.csite.2018.04.015

    Azimi-Nejadian, H., & Hoseini, S. S. (2019). Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat and Mass Transfer, 55(10), 2921-2930. https://doi.org/10.1007/s00231-019-02633-x

    Bahammou, Y., Tagnamas, Z., Lamharrar, A., & Idlimam, A. (2019). Thin-layer solar drying characteristics of Moroccan horehound leaves (Marrubium vulgare L.) under natural and forced convection solar drying. Solar Energy, 188, 958-969. https://doi.org/10.1016/j.solener.2019.07.003

    Bakal, S. B., Sharma, G. P., Sonawane, S. P., & Verma, R. C. (2012). Kinetics of potato drying using fluidized bed dryer. J Food Sci Technol, 49(5), 608-613. https://doi.org/10.1007/s13197-011-0328-x

    Beigi, M. (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology, 36, 145-150. https://doi.org/10.1590/1678-457X.0068

    Beigi, M. (2017). Numerical simulation of potato slices drying using a two-dimensional finite element model. Chemical Industry and Chemical Engineering Quarterly, 23(3), 431-440. https://doi.org/10.2298/CICEQ160530057B

    Bhardwaj, A. K., Kumar, R., & Chauhan, R. (2019). Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region. Solar Energy, 177, 395-407. https://doi.org/10.1016/j.solener.2018.11.007

    Chandra, A., Kumar, S., Tarafdar, A., & Nema, P. K. (2021). Ultrasonic and osmotic pretreatments followed by convective and vacuum drying of papaya slices. Journal of the Science of Food and Agriculture, 101(6), 2264-2272. https://doi.org/10.1002/jsfa.10847

    Chasiotis, V., Tsakirakis, A., Termentzi, A., Machera, K., & Filios, A. (2022). Drying and quality characteristics of Cannabis sativa L. inflorescences under constant and time-varying convective drying temperature schemes. Thermal Science and Engineering Progress, 28, 101076. https://doi.org/10.1016/j.tsep.2021.101076

    Darvishi, H. (2012). Energy consumption and mathematical modeling of microwave drying of potato slices. Agricultural Engineering International: CIGR Journal, 14(1), 94-102.

    Darvishi, H., Asl, A. R., Asghari, A., & Gazori, G. (2013). Mathematical modeling, moisture diffusion, energy consumption and efficiency of thin layer drying of potato slices. Journal of Food Processing and Technology, 4(3), 1-6.

    Doymaz, İ. (2011). Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat and Mass Transfer, 47(3), 277-285. https://doi.org/10.1007/s00231-010-0722-3

    Doymaz, İ. (2012). Drying of potato slices: Effect of pretreatments and mathematical modeling. Journal of Food Processing and Preservation, 36(4), 310-319. https://doi.org/10.1111/j.1745-4549.2011.00594.x

    Ezeanya, N. C. (2018). Modeling of thin-layer solar drying kinetics of cassava noodles (tapioca). Agricultural Engineering International: CIGR Journal, 20(1), 193-200.

    Felizardo, M. P., Merlo, G. R. F., & Maia, G. D. (2021). Modeling drying kinetics of Jacaranda mimosifolia seeds with variable effective diffusivity via diffusion model. Biosystems Engineering, 205, 234-245. https://doi.org/10.1016/j.biosystemseng.2021.03.008

    Ferreira, J. P. d. L., Castro, D. S. d., Moreira, I. d. S., Silva, W. P. d., de Figueirêdo, R. M., & Queiroz, A. J. d. M. (2020). Convective drying kinetics of osmotically pretreated papaya cubes. Revista Brasileira de Engenharia Agrícola e Ambiental, 24, 200-208. https://doi.org/10.1590/1807-1929/agriambi.v24n3p200-208  

    Gupta, A., Biswas, A., Das, B., & Reddy, B. V. (2022). Development and testing of novel photovoltaic-thermal collector-based solar dryer for green tea drying application. Solar Energy, 231, 1072-1091. https://doi.org/10.1016/j.solener.2021.12.030

    Gupta, A., Das, B., & Biswas, A. (2021). Performance analysis of stand-alone solar photovoltaic thermal dryer for drying of green chili in hot-humid weather conditions of North-East India. Journal of Food Process Engineering, 44(6), e13701. https://doi.org/10.1111/jfpe.13701

    Gupta, A., Das, B., Biswas, A., & Mondol, J. D. (2022). An environmental and economic evaluation of solar photovoltaic thermal dryer. International Journal of Environmental Science and Technology, 19(11), 10773-10792. https://doi.org/10.1007/s13762-021-03739-8

    Gupta, A., Das, B., Biswas, A., & Mondol, J. D. (2022). Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying. Renewable Energy, 188, 1008-1021. https://doi.org/10.1016/j.renene.2022.02.090

    Gupta, A., Das, B., & Mondol, J. D. (2022). Experimental and theoretical performance analysis of a hybrid photovoltaic-thermal (PVT) solar air dryer for green chillies. International Journal of Ambient Energy, 43(1), 2423-2431. https://doi.org/10.1080/01430750.2020.1734658

    Hafezi, N., Sheikhdavoodi, M. J., & Sajadiye, S. M. (2015). The effect of drying kinetic on shrinkage and colour of potato slices in the vacuum-infrared drying method. International Journal of Agricultural and Food Research, 4(1), 24-31.

    Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79(1), 47-56. https://doi.org/10.1016/j.jfoodeng.2006.01.025

    Hendorson, S. (1961). Grain drying theory (I) temperature effect on drying coefficient. Journal of agricultural engineering research, 6(3), 169-174. https://doi.org/10.11357/jsam1937.62.5_104

    Inyang, U. E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic models for drying techniques-food materials. Advances in Chemical Engineering and Science, 8(02), 27.

    Jomlapelatikul, A., Wiset, L., Duangkhamchan, W., & Poomsa-ad, N. (2016). Model-based investigation of heat and mass transfer for selecting optimum intermediate moisture content in stepwise drying. Applied Thermal Engineering, 107, 987-993. https://doi.org/10.1016/j.applthermaleng.2016.07.064

    Karathanos, V. T. (1999). Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39(4), 337-344. https://doi.org/10.1016/S0260-8774(98)00132-0

    Kavak Akpinar, E., Midilli, A., & Bicer, Y. (2005). Energy and exergy of potato drying process via cyclone type dryer. Energy Conversion and Management, 46(15), 2530-2552. https://doi.org/10.1016/j.enconman.2004.12.008

    Kaveh, M., Rasooli Sharabiani, V., Amiri Chayjan, R., Taghinezhad, E., Abbaspour-Gilandeh, Y., & Golpour, I. (2018). ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Information Processing in Agriculture, 5(3), 372-387. https://doi.org/10.1016/j.inpa.2018.05.003

    Komolafe, C. A., Ojediran, J. O., Ajao, F. O., Dada, O. A., Afolabi, Y. T., Oluwaleye, I. O., & Alake, A. S. (2019). Modelling of moisture diffusivity during solar drying of locust beans with thermal storage material under forced and natural convection mode. Case Studies in Thermal Engineering, 15, 100542. https://doi.org/10.1016/j.csite.2019.100542

    Komolafe, C. A., Oluwaleye, I. O., Adejumo, A. O. D., Waheed, M. A., & Kuye, S. I. (2018). Determination of moisture diffusivity and activation energy in the convective drying of fish. International Journal of Heat and Technology, 36(4), 1262-1267.

    Lee, J. H., & Kim, H. J. (2009). Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices. LWT - Food Science and Technology, 42(1), 180-186. https://doi.org/10.1016/j.lwt.2008.05.017

    Lin, Y.-P., Tsen, J.-H., & King, V. A.-E. (2005). Effects of far-infrared radiation on the freeze-drying of sweet potato. Journal of Food Engineering, 68(2), 249-255. https://doi.org/10.1016/j.jfoodeng.2004.05.037

    Lingayat, A., & Chandramohan, V. P. (2021). Numerical investigation on solar air collector and its practical application in the indirect solar dryer for banana chips drying with energy and exergy analysis. Thermal Science and Engineering Progress, 26, 101077. https://doi.org/10.1016/j.tsep.2021.101077

    Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97. https://doi.org/10.1016/0260-8774(95)00062-3

    Markowski, M., Bondaruk, J., & Błaszczak, W. (2009). Rehydration Behavior of Vacuum-Microwave-Dried Potato Cubes. Drying Technology, 27(2), 296-305. https://doi.org/10.1080/07373930802606600

    Marwaha, R., Dinesh, K., Singh, S., & Pandey, S. (2009). Chipping and nutritional qualities of Indian and exotic potato processing varieties stored under different conditions. Journal of Food Science and Technology (Mysore), 46(4), 354-358.

    Meziane, S. (2011). Drying kinetics of olive pomace in a fluidized bed dryer. Energy Conversion and Management, 52(3), 1644-1649. https://doi.org/10.1016/j.enconman.2010.10.027

    Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864

    Mirzaee, E., Rafiee, S., Keyhani, A., & Emam-Djomeh, Z. (2009). Determining of moisture diffusivity and activation energy in drying of apricots. Research in Agricultural Engineering, 55(3), 114-120. https://doi.org/10.17221/8/2009-RAE

    Mugi, V. R., & Chandramohan, V. P. (2021). Shrinkage, effective diffusion coefficient, surface transfer coefficients and their factors during solar drying of food products – A review. Solar Energy, 229, 84-101. https://doi.org/10.1016/j.solener.2021.07.042

    Naderinezhad, S., Etesami, N., Poormalek Najafabady, A., & Ghasemi Falavarjani, M. (2016). Mathematical modeling of drying of potato slices in a forced convective dryer based on important parameters. Food Sci Nutr, 4(1), 110-118. https://doi.org/10.1002/fsn3.258

    Olanipekun, B. F., Tunde-Akintunde, T. Y., Oyelade, O. J., Adebisi, M. G., & Adenaya, T. A. (2015). Mathematical Modeling of Thin-Layer Pineapple Drying. Journal of Food Processing and Preservation, 39(6), 1431-1441. https://doi.org/10.1111/jfpp.12362

    Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2018). Modelling the mid-infrared drying of sweet potato: kinetics, mass and heat transfer parameters, and energy consumption. Heat and Mass Transfer, 54(10), 2917-2933. https://doi.org/10.1007/s00231-018-2338-y

    Panchal, J. B., Champawat, P. S., Mudgal, V. D., & Jain, S. K. (2019). Effect of different pretreatments and temperature on drying characteristics of sweet Potato. International Journal of Chemical Studies, 7(3), 3704-3711. https://www.chemijournal.com/archives/2019/vol7issue3/PartBI/7-3-9-291.pdf

    Pimpaporn, P., Devahastin, S., & Chiewchan, N. (2007). Effects of combined pretreatments on drying kinetics and quality of potato chips undergoing low-pressure superheated steam drying. Journal of Food Engineering, 81(2), 318-329. https://doi.org/10.1016/j.jfoodeng.2006.11.009

    1. Verma, L., A. Bucklin, R., B. Endan, J., & T. Wratten, F. (1985). Effects of Drying Air Parameters on Rice Drying Models. Transactions of the ASAE, 28(1), 296-0301. https://doi.org/10.13031/2013.32245

    Reyes, A., Cerón, S., Zúñiga, R., & Moyano, P. (2007). A comparative study of microwave-assisted air drying of potato slices. Biosystems Engineering, 98(3), 310-318. https://doi.org/10.1016/j.biosystemseng.2007.07.006

    Reyes, A., Moyano, P., & Paz, J. (2007). Drying of Potato Slices in a Pulsed Fluidized Bed. Drying Technology, 25(4), 581-590. https://doi.org/10.1080/07373930701227011

    Rizvi, S. S. H. (1995). Chapter 6-Thermodynamic properties of foods in dehydration. In R. M.A & R. S.S.H. (Eds.), Engineering Properties of Foods (2nd ed., pp. 223-309). Marcel Dekker, Inc., New York.

    Saravacos, G. D. (2005). Chapter 8-Mass Transfer Properties of Foods In M. A. Rao, S. S. H. Rizvi, & A. K. Datta (Eds.), Engineering Properties of Foods (3rd ed., pp. 327-373). CRC Press. https://doi.org/10.1201/9781420028805

    Sengar, S., Mohod, A., & Khandetod, Y. (2012). Experimental evaluation of solar dryer for kokam fruit. Global Journal of Science Frontier Research Agriculture and Biology, 12(3), 83-89.

    Shi, X., Yang, Y., Li, Z., Wang, X., & Liu, Y. (2020). Moisture transfer and microstructure change of banana slices during contact ultrasound strengthened far-infrared radiation drying. Innovative Food Science & Emerging Technologies, 66, 102537. https://doi.org/10.1016/j.ifset.2020.102537

    Srikiatden, J., & Roberts, J. S. (2006). Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying. Journal of Food Engineering, 74(1), 143-152. https://doi.org/10.1016/j.jfoodeng.2005.02.026

    Srivastava, A. K., Shukla, S. K., & Singh, U. K. (2015). Modeling and Evaluation of Thermal Diffusivity and Activation Energy of Potato slices in Forced Convection Multi Tray Solar Dryer. American Journal of Food Science and Technology, 3(2), 27-32. https://doi.org/10.12691/ajfst-3-2-1

    Subramanian, C. V., Neelamegam, P., & Sundari, A. U. (2014). Drying Kinetics of Muscat Grapes in a Solar Drier with Evacuated Tube Collector. International Journal of Engineering,  27(5), 811-818. https://www.ije.ir/article_72314_074632f3d19751e66ed886af43476019.pdf

    Sundari, A. U., & Subramanian, C. V. (2017). Comparative study of solar drying characteristics and thin-layer mathematical modelling of mango and cluster beans in two types of solar driers. International Journal of Latest Engineering Research and Applications, ISSN, 2(11), 49-58.

    Sundari, A. U., & Veeramanipriya, E. (2017). A review of solar dryers for drying agricultural products. Indian Journal of Scientific Research, 14(1), 311-317.

    Torki-Harchegani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., Sadeghi, M., & Tohidi, M. (2016). Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat and Mass Transfer, 52(2), 281-289. https://doi.org/10.1007/s00231-015-1546-y

    Veeramanipriya, E., & Sundari, A. R. U. (2021). Performance evaluation of hybrid photovoltaic thermal (PVT) solar dryer for drying of cassava. Solar Energy, 215, 240-251. https://doi.org/10.1016/j.solener.2020.12.027

    Veeramanipriya, E., Sundari, A. R. U., & Monisha, E. (2020). Numerical Analysis of Thin Layer Drying Kinetics of Untreated Carrot Slices using Photovoltaic Thermal Solar Dryer. International Journal of Scientific & Technology Research, 9(6), 39-45.

    Veeramanipriya, E., & Sundari, A. U. (2019). Drying kinetics of forced convection solar dryer for fruit drying. Int. J. Recent Technol. Eng, 7, 323-327.

    Veeramanipriya, E., Sundari, A. U., & Asaithambi, R. (2019). Numerical Modelling of Drying Kinetics of Banana Flowers using Natural and Forced Convection Dryers. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication, 8(10), 4193-4197. https://doi.org/10.35940/ijitee.J1057.0881019

    Vega-Gálvez, A., Miranda, M., Díaz, L. P., Lopez, L., Rodriguez, K., & Di Scala, K. (2010). Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour Technol, 101(19), 7265-7270. https://doi.org/10.1016/j.biortech.2010.04.040

    Wang, G. Y., & Singh, R. P. (1978). Single layer drying equation for rough rice. ASAE Paper.

    Yağcıoğlu, A., Değirmencioğlu, A., & Çağatay, F. (1999). Drying characteristics of laurel leaves under different drying conditions. 7th Int Congress on Agricultural Mechanization and Enerdy,

CAPTCHA Image
Volume 11, Issue 3
November 2022
Pages 319-334
  • Receive Date: 29 March 2022
  • Revise Date: 02 July 2022
  • Accept Date: 16 July 2022