خواص ساختاری و مورفولوژیکی کمپلکس کنسانترۀ پروتئین آب‌پنیر-نشاستۀ اصلاح‌شده: تأثیر pH و نسبت بیوپلیمرها

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد، مشهد، ایران

2 قطب علمی هیدروکلوئیدهای طبیعی بومی ایران، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این پژوهش، تقابل بین کنسانترۀ پروتئین آب‌پنیر (WPC) و نشاستۀ اصلاح‌شده با اکتنیل سوکسینیک انهیدرید (OSAS) به‌عنوان تابعی از pH (5 ،4 ،3 و 6) و نسبت WPC به OSAS (1:1 ،1:2 و 2:1) در غلظت کل 1 درصد وزنی/وزنی با اندازه‌گیری خواص ساختاری (کدورت‌سنجی، اندازۀ ذرات، پتانسیل زتا، ویسکومتری، گروه‌های عملگر شیمیایی (FTIR) و مورفولوژیکی (SEM)) ارزیابی شد. بیشترین میزان پتانسیل زتا در نسبت 1:2 دو بیوپلیمر و 3=pH مشاهده شد. با افزایش pH و کاهش نسبت WPC به OSAS میزان پتانسیل زتا کاهش یافت و در نسبت 2:1 و 6=pH به کمترین مقدار خود رسید. کمترین اندازۀ ذرات در نسبت 2:1 و 6=pH مشاهده گردید (0/819 میکرومتر) که با کاهش pH تا 4 و افزایش نسبت بیوپلیمرها تا 1:2 به بیشترین مقدار رسید (2/260 میکرومتر). نتایج آزمون کدورت‌سنجی در تطابق با نتایج آزمون اندازۀ ذرات بود و بیشترین و کمترین میزان کدورت در نقاط مشابهی مشاهده گردید. بیشترین میزان ویسکوزیته در نسبت 2:1 و 4=pH مشاهده شد (1/301 میلی‌پاسکال ثانیه). با کاهش نسبت OSAS به WPC و افزایش pH، کمترین میزان ویسکوزیته در نسبت 1:2 و 6=pH مشخص شد (1/147 میلی‌پاسکال ثانیه). در تمامی صفات اندازه‌گیری‌شده اختلاف آماری معنی‌داری بین مقادیر WPC شاهد و محلول‌های کمپلکس وجود داشت (0/05>P). در آزمون FTIR تضعیف پیک آمید نوع دو و حذف پیک کربوکسیلات و گروه OSA گواهی بر تشکیل کمپلکس‌های الکترواستاتیکی بین WPC و OSAS بود. نتایج SEM نشان داد با تشکیل کمپلکس‌های الکترواستاتیک ساختارهای کروی WPC و OSAS تغییرکرده و تبدیل به ساختار شبکه‌ای و ورقه‌ای می‌گردد.

کلیدواژه‌ها

موضوعات

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Abbas, S., Bashari, M., Akhtar, W., Li, W. W., & Zhang, X. (2014). Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrasonics Sonochemistry, 21(4), 1265-1274. https://doi.org/10.1016/j.ultsonch.2013.12.017
Arik Kibar, E. A., & Us, F. (2014). Evaluation of Structural Properties of Cellulose Ether-Corn Starch Based Biodegradable Films. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(7), 342-351. https://doi.org/10.1080/00914037.2013.845190
Azarikia, F., & Abbasi, S. (2016). Mechanism of soluble complex formation of milk proteins with native gums (tragacanth and Persian gum). Food Hydrocolloids, 59, 35-44. https://doi.org/10.1016/j.foodhyd.2015.10.018
Behrouzain, F., Razavi, S. M. A., & Joyner, H. (2020). Mechanisms of whey protein isolate interaction with basil seed gum: Influence of pH and protein-polysaccharide ratio. Carbohydrate Polymers, 232, 115775. https://doi.org/10.1016/j.carbpol.2019.115775
Davis, J. P., Foegeding, E. A., & Hansen, F. K. (2004). Electrostatic effects on the yield stress of whey protein isolate foams. Colloids and Surfaces B: Biointerfaces, 34(1), 13-23. https://doi.org/10.1016/j.colsurfb.2003.10.014
de Kruif, C. G., Weinbreck, F., & de Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9(5), 340-349. https://doi.org/10.1016/j.cocis.2004.09.006
Dickinson, E. (1998). Stability and rheological implications of electrostatic milk protein–polysaccharide interactions. Trends in Food Science & Technology, 9(10), 347-354. https://doi.org/10.1016/S0924-2244(98)00057-0
Firebaugh, J. D., & Daubert, C. R. (2005). Emulsifying and Foaming Properties of a Derivatized Whey Protein Ingredient. International Journal of Food Properties, 8(2), 243-253. https://doi.org/10.1081/JFP-200060245
Ghadermazi, R., Khosrowshahi Asl, A., & Tamjidi, F. (2019). Optimization of whey protein isolate-quince seed mucilage complex coacervation. International Journal of Biological Macromolecules, 131, 368-377. https://doi.org/10.1016/j.ijbiomac.2019.03.026
González-Martínez, D. A., Carrillo-Navas, H., Barrera-Díaz, C. E., Martínez-Vargas, S. L., Alvarez-Ramírez, J., & Pérez-Alonso, C. (2017). Characterization of a novel complex coacervate based on whey protein isolate-tamarind seed mucilage. Food Hydrocolloids, 72, 115-126. https://doi.org/10.1016/j.foodhyd.2017.05.037
Guerrero, P., Kerry, J. P., & de la Caba, K. (2014). FTIR characterization of protein–polysaccharide interactions in extruded blends. Carbohydrate Polymers, 111, 598-605. https://doi.org/10.1016/j.carbpol.2014.05.005
Harnsilawat, T., Pongsawatmanit, R., & McClements, D. J. (2006). Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 20(5), 577-585. https://doi.org/10.1016/j.foodhyd.2005.05.005
Hou, P., Pu, F., Zou, H., Diao, M., Zhao, C., Xi, C., & Zhang, T. (2019). Whey protein stabilized nanoemulsion: A potential delivery system for ginsenoside Rg3 whey protein stabilized nanoemulsion: Potential Rg3 delivery system. Food Bioscience, 31, 100427. https://doi.org/10.1016/j.fbio.2019.100427
Huang, G.-Q., Sun, Y.-T., Xiao, J.-X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534-539. https://doi.org/10.1016/j.foodchem.2012.04.140
Jones, O. G., Decker, E. A., & McClements, D. J. (2009). Formation of biopolymer particles by thermal treatment of β-lactoglobulin–pectin complexes. Food Hydrocolloids, 23(5), 1312-1321. https://doi.org/10.1016/j.foodhyd.2008.11.013
Karazhiyan, H., Razavi, S. M. A., Phillips, G. O., Fang, Y., Al-Assaf, S., Nishinari, K., & Farhoosh, R. (2009). Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food Hydrocolloids, 23(8), 2062-2068. https://doi.org/10.1016/j.foodhyd.2009.03.019
Kasapis, S. (2008). Phase Separation in Biopolymer Gels: A Low- to High-Solid Exploration of Structural Morphology and Functionality. Critical Reviews in Food Science and Nutrition, 48(4), 341-359. https://doi.org/10.1080/10408390701347769
Kholoosi, Z., Mazaheri Tehrani, M., & Razavi, S. M. A. (2021). Optimization of the interaction of whey protein concentrate-cress seed gum using response surface methodology (RSM) and investigating the foaming properties of the optimal sample. Iranian Food Science and Technology Research Journal, 17(4), 437-449 https://doi.org/10.22067/ifstrj.v17i4.86853  (in Persian)
Klein, M., Aserin, A., Ishai, P. B., & Garti, N. (2010). Interactions between whey protein isolate and gum Arabic. Colloids and Surfaces B: Biointerfaces, 79(2), 377-383. https://doi.org/10.1016/j.colsurfb.2010.04.021
Krzeminski, A., Prell, K. A., Weiss, J., & Hinrichs, J. (2014). Environmental response of pectin-stabilized whey protein aggregates. Food Hydrocolloids, 35, 332-340. https://doi.org/10.1016/j.foodhyd.2013.06.014
Lan, Y., Chen, B., & Rao. J. (2018). Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocolloids, 80, 245-253. https://doi.org/10.1016/j.foodhyd.2018.02.021
Ledward, D. A. (1993). Creating textures from mixed biopolymer systems. Trends in Food Science & Technology, 4(12), 402-405. https://doi.org/10.1016/0924-2244(93)90044-B
Li, D., Li, L., Xiao, N., Li, M., & Xie, X. (2018). Physical properties of oil-in-water nanoemulsions stabilized by OSA-modified starch for the encapsulation of lycopene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 552, 59-66. https://doi.org/10.1016/j.colsurfa.2018.04.055
Liu, J., Shim, Y. Y., Shen, J., Wang, Y., & Reaney, M. J. T. (2017). Whey protein isolate and flaxseed (Linum usitatissimum L.) gum electrostatic coacervates: Turbidity and rheology. Food Hydrocolloids, 64, 18-27. https://doi.org/10.1016/j.foodhyd.2016.10.006
Mohammad Amini, A., Razavi, S. M., & Mortazavi, S. A. (2015). Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydr Polym, 122, 282-292. https://doi.org/10.1016/j.carbpol.2015.01.020
Mohammadi, S., Jafari, S. M., Azari kia, F., & Mirzaei, H. (2019). Evaluation of rheological and structural characteristics of whey protein concentrate- gum tragacanth complex coacervation. Journal of food science and technology(Iran), 16(87), 225-237. http://fsct.modares.ac.ir/article-7-23801-en.html  (in Persian)
Oduse, K., Campbell, L., Lonchamp, J., & Euston, S. R. (2017). Electrostatic complexes of whey protein and pectin as foaming and emulsifying agents. International Journal of Food Properties, 20(sup3), S3027-S3041. https://doi.org/10.1080/10942912.2017.1396478
Puerta-Gomez, A. F. & Castell-Perez, M. E. (2016). Studies on self-assembly interactions of proteins and octenyl succinic anhydrate (OSA)-modified depolymerized waxy rice starch using rheological principles. Journal of Applied Polymer Science, 133(27). https://doi.org/10.1002/app.43603
Raei, M., Rafe, A., & Shahidi, F. (2018). Rheological and structural characteristics of whey protein-pectin complex coacervates. Journal of Food Engineering, 228, 25-31. https://doi.org/10.1016/j.jfoodeng.2018.02.007
Raoufi, N., Fang, Y., Kadkhodaee, R., Phillips, G. O., & Najafi, M. N. (2017). Changes in Turbidity, Zeta Potential and Precipitation Yield Induced by Persian Gum-Whey Protein Isolate Interactions During Acidification. Journal of Food Processing and Preservation, 41(3), e12975. https://doi.org/10.1111/jfpp.12975
Sadahira, M. S., Lopes, F. C., Rodrigues, M. I., Yamada, A. T., Cunha, R. L., & Netto, F. M. (2015). Effect of pH and interaction between egg white protein and hydroxypropymethylcellulose in bulk aqueous medium on foaming properties. Carbohydr Polym, 125, 26-34. https://doi.org/10.1016/j.carbpol.2015.02.033
Salminen, H., & Weiss, J. (2014). Effect of Pectin Type on Association and pH Stability of Whey Protein—Pectin Complexes. Food Biophysics, 9(1), 29-38. https://doi.org/10.1007/s11483-013-9314-3
Samant, S. K., Singhal, R. S., Kulkarni, P. R., & Rege, D. V. (1993). Protein-polysaccharide interactions: a new approach in food formulations. International Journal of Food Science & Technology, 28(6), 547-562. https://doi.org/10.1111/j.1365-2621.1993.tb01306.x
Santipanichwong, R., Suphantharika, M., Weiss, J., & McClements, D. J. (2008). Core-Shell Biopolymer Nanoparticles Produced by Electrostatic Deposition of Beet Pectin onto Heat-Denatured β-Lactoglobulin Aggregates. Journal of Food Science, 73(6), N23-N30. https://doi.org/10.1111/j.1750-3841.2008.00804.x
Schmitt, C., Sanchez, C., Desobry-Banon, S., & Hardy, J. (1998). Structure and Technofunctional Properties of Protein-Polysaccharide Complexes: A Review. Critical Reviews in Food Science and Nutrition, 38(8), 689-753. https://doi.org/10.1080/10408699891274354
Shogren, R., & Biresaw, G. (2007). Surface properties of water soluble maltodextrin, starch acetates and starch acetates/alkenylsuccinates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298(3), 170-176. https://doi.org/10.1016/j.colsurfa.2006.10.070
Sindayikengera, S., & Xia, W. S. (2006). Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. J Zhejiang Univ Sci B, 7(2), 90-98. https://doi.org/10.1631/jzus.2006.B0090
Stone, A. K., & Nickerson, M. T. (2012). Formation and functionality of whey protein isolate–(kappa-, iota-, and lambda-type) carrageenan electrostatic complexes. Food Hydrocolloids, 27(2), 271-277 https://doi.org/10.1016/j.foodhyd.2011.08.006
Tolstoguzov, V. B. (1991). Functional properties of food proteins and role of protein-polysaccharide interaction. Food Hydrocolloids, 4(6), 429-468. https://doi.org/10.1016/S0268-005X(09)80196-3
Torres, O., Murray, B., & Sarkar, A. (2016). Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science & Technology, 55, 98-108. https://doi.org/10.1016/j.tifs.2016.07.006
Turgeon, S. L., Beaulieu, M., Schmitt, C., & Sanchez, C. (2003). Protein–polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, 8(4), 401-414. https://doi.org/10.1016/S1359-0294(03)00093-1
Vargas-Castro, S., Delgado-Macuil, R., Ruiz-Espinosa, H., Zaca-Moran, P., Rojas-López, M., & Amador-Espejo, G. G. (2018, November 14-16). Characterization of whey protein isolate-kappa carrageenan complex coacervates at different pH levels [Conference presentation]. 8th Food Science, Biotechnology and Safety Congress, Puerto Vallarta, Jalisco, Mexico.
Wagoner, T., Vardhanabhuti, B., & Foegeding, E. A. (2016). Designing Whey Protein-Polysaccharide Particles for Colloidal Stability. Annu Rev Food Sci Technol, 7, 93-116. https://doi.org/10.1146/annurev-food-041715-033315
Wang, J., Su, L., & Wang, S. (2010). Physicochemical properties of octenyl succinic anhydride-modified potato starch with different degrees of substitution. Journal of the Science of Food and Agriculture, 9(3), 424-429 https://doi.org/10.1002/jsfa.3832
Wang, Z., Zhang, S., & Vardhanabhuti, B. (2015). Foaming Properties of Whey Protein Isolate and λ-Carrageenan Mixed Systems. Journal of Food Science, 80(8), N1893-N1902. https://doi.org/10.1111/1750-3841.12940
Weinbreck, F., de Vries, R., Schrooyen, P., & de Kruif, C. G. (2003). Complex Coacervation of Whey Proteins and Gum Arabic. Biomacromolecules, 4(2), 293-303. https://doi.org/10.1021/bm025667n
Wu, B.-c., & McClements, D. J. (2015). Microgels formed by electrostatic complexation of gelatin and OSA starch: Potential fat or starch mimetics. Food Hydrocolloids, 47, 87-93. https://doi.org/10.1016/j.foodhyd.2015.01.021
Zhao, Y., Khalid, N., Shu, G., Neves, M. A., Kobayashi, I., & Nakajima, M. (2019). Complex coacervates from gelatin and octenyl succinic anhydride modified kudzu starch: Insights of formulation and characterization. Food Hydrocolloids, 86, 70-77. https://doi.org/10.1016/j.foodhyd.2018.01.040
CAPTCHA Image
دوره 12، شماره 1
خرداد 1402
صفحه 39-54
  • تاریخ دریافت: 31 فروردین 1401
  • تاریخ بازنگری: 09 مرداد 1401
  • تاریخ پذیرش: 14 مرداد 1401