Stractural and Morphological Characteristics of Whey Protein Concentrate-Modified Starch Complex: Effect of pH and Bioplymers Ratio

Document Type : Original Paper

Authors

1 Department of Food Science & Technology, Ferdowsi University of Mashhad, Iran

2 Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In this study, interaction between WPC and OSAS as a function of pH (3, 4, 5 and 6) and biopolymers ratio (1:2, 1:1 and 2:1) at total concentration of 1% w/w was investigated by measuring the structural (turbidity, particles size, Zeta potential, viscometery, FTIR) and morphological (SEM) properties. Maximum zeta potential was observed at 2:1 biopolymers ratio and pH=3. With increasing pH and decreasing ratio of WPC:OSAS, zeta potential value decreased. At ratio 1:2 and pH 6 minimum zeta potential was gained. Minimum particles size was observed at ratio 1:2 and pH=6 (0.819 µm) in which with decreasing pH to 4 and increasing ratio up to 2:1, it was maximized (2.260). Turbidity results was in accordance with particles size measurements and maximum and minimum results was observed at the same points. At ratio 1:2 and pH=4, maximum viscosity was observed (1.301 mPa.s). Reducing the ratio and increasing pH led to minimum viscosity at pH=6 and ratio 2:1 (1.147 mPa.s). In all measured characters, there was significant difference between control (WPC) and complex samples. FTIR study revealed that by complexation between WPC and OSAS, amid II peak was weakened and carboxylated and OSA group's peak were removed. SEM images showed that with formation of electrostatic complex, spherical structures of WPC and OSAS was changed to porous network and sheet structures.

Keywords

Main Subjects

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Abbas, S., Bashari, M., Akhtar, W., Li, W. W., & Zhang, X. (2014). Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrasonics Sonochemistry, 21(4), 1265-1274. https://doi.org/10.1016/j.ultsonch.2013.12.017
Arik Kibar, E. A., & Us, F. (2014). Evaluation of Structural Properties of Cellulose Ether-Corn Starch Based Biodegradable Films. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(7), 342-351. https://doi.org/10.1080/00914037.2013.845190
Azarikia, F., & Abbasi, S. (2016). Mechanism of soluble complex formation of milk proteins with native gums (tragacanth and Persian gum). Food Hydrocolloids, 59, 35-44. https://doi.org/10.1016/j.foodhyd.2015.10.018
Behrouzain, F., Razavi, S. M. A., & Joyner, H. (2020). Mechanisms of whey protein isolate interaction with basil seed gum: Influence of pH and protein-polysaccharide ratio. Carbohydrate Polymers, 232, 115775. https://doi.org/10.1016/j.carbpol.2019.115775
Davis, J. P., Foegeding, E. A., & Hansen, F. K. (2004). Electrostatic effects on the yield stress of whey protein isolate foams. Colloids and Surfaces B: Biointerfaces, 34(1), 13-23. https://doi.org/10.1016/j.colsurfb.2003.10.014
de Kruif, C. G., Weinbreck, F., & de Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9(5), 340-349. https://doi.org/10.1016/j.cocis.2004.09.006
Dickinson, E. (1998). Stability and rheological implications of electrostatic milk protein–polysaccharide interactions. Trends in Food Science & Technology, 9(10), 347-354. https://doi.org/10.1016/S0924-2244(98)00057-0
Firebaugh, J. D., & Daubert, C. R. (2005). Emulsifying and Foaming Properties of a Derivatized Whey Protein Ingredient. International Journal of Food Properties, 8(2), 243-253. https://doi.org/10.1081/JFP-200060245
Ghadermazi, R., Khosrowshahi Asl, A., & Tamjidi, F. (2019). Optimization of whey protein isolate-quince seed mucilage complex coacervation. International Journal of Biological Macromolecules, 131, 368-377. https://doi.org/10.1016/j.ijbiomac.2019.03.026
González-Martínez, D. A., Carrillo-Navas, H., Barrera-Díaz, C. E., Martínez-Vargas, S. L., Alvarez-Ramírez, J., & Pérez-Alonso, C. (2017). Characterization of a novel complex coacervate based on whey protein isolate-tamarind seed mucilage. Food Hydrocolloids, 72, 115-126. https://doi.org/10.1016/j.foodhyd.2017.05.037
Guerrero, P., Kerry, J. P., & de la Caba, K. (2014). FTIR characterization of protein–polysaccharide interactions in extruded blends. Carbohydrate Polymers, 111, 598-605. https://doi.org/10.1016/j.carbpol.2014.05.005
Harnsilawat, T., Pongsawatmanit, R., & McClements, D. J. (2006). Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 20(5), 577-585. https://doi.org/10.1016/j.foodhyd.2005.05.005
Hou, P., Pu, F., Zou, H., Diao, M., Zhao, C., Xi, C., & Zhang, T. (2019). Whey protein stabilized nanoemulsion: A potential delivery system for ginsenoside Rg3 whey protein stabilized nanoemulsion: Potential Rg3 delivery system. Food Bioscience, 31, 100427. https://doi.org/10.1016/j.fbio.2019.100427
Huang, G.-Q., Sun, Y.-T., Xiao, J.-X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534-539. https://doi.org/10.1016/j.foodchem.2012.04.140
Jones, O. G., Decker, E. A., & McClements, D. J. (2009). Formation of biopolymer particles by thermal treatment of β-lactoglobulin–pectin complexes. Food Hydrocolloids, 23(5), 1312-1321. https://doi.org/10.1016/j.foodhyd.2008.11.013
Karazhiyan, H., Razavi, S. M. A., Phillips, G. O., Fang, Y., Al-Assaf, S., Nishinari, K., & Farhoosh, R. (2009). Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food Hydrocolloids, 23(8), 2062-2068. https://doi.org/10.1016/j.foodhyd.2009.03.019
Kasapis, S. (2008). Phase Separation in Biopolymer Gels: A Low- to High-Solid Exploration of Structural Morphology and Functionality. Critical Reviews in Food Science and Nutrition, 48(4), 341-359. https://doi.org/10.1080/10408390701347769
Kholoosi, Z., Mazaheri Tehrani, M., & Razavi, S. M. A. (2021). Optimization of the interaction of whey protein concentrate-cress seed gum using response surface methodology (RSM) and investigating the foaming properties of the optimal sample. Iranian Food Science and Technology Research Journal, 17(4), 437-449 https://doi.org/10.22067/ifstrj.v17i4.86853  (in Persian)
Klein, M., Aserin, A., Ishai, P. B., & Garti, N. (2010). Interactions between whey protein isolate and gum Arabic. Colloids and Surfaces B: Biointerfaces, 79(2), 377-383. https://doi.org/10.1016/j.colsurfb.2010.04.021
Krzeminski, A., Prell, K. A., Weiss, J., & Hinrichs, J. (2014). Environmental response of pectin-stabilized whey protein aggregates. Food Hydrocolloids, 35, 332-340. https://doi.org/10.1016/j.foodhyd.2013.06.014
Lan, Y., Chen, B., & Rao. J. (2018). Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocolloids, 80, 245-253. https://doi.org/10.1016/j.foodhyd.2018.02.021
Ledward, D. A. (1993). Creating textures from mixed biopolymer systems. Trends in Food Science & Technology, 4(12), 402-405. https://doi.org/10.1016/0924-2244(93)90044-B
Li, D., Li, L., Xiao, N., Li, M., & Xie, X. (2018). Physical properties of oil-in-water nanoemulsions stabilized by OSA-modified starch for the encapsulation of lycopene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 552, 59-66. https://doi.org/10.1016/j.colsurfa.2018.04.055
Liu, J., Shim, Y. Y., Shen, J., Wang, Y., & Reaney, M. J. T. (2017). Whey protein isolate and flaxseed (Linum usitatissimum L.) gum electrostatic coacervates: Turbidity and rheology. Food Hydrocolloids, 64, 18-27. https://doi.org/10.1016/j.foodhyd.2016.10.006
Mohammad Amini, A., Razavi, S. M., & Mortazavi, S. A. (2015). Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydr Polym, 122, 282-292. https://doi.org/10.1016/j.carbpol.2015.01.020
Mohammadi, S., Jafari, S. M., Azari kia, F., & Mirzaei, H. (2019). Evaluation of rheological and structural characteristics of whey protein concentrate- gum tragacanth complex coacervation. Journal of food science and technology(Iran), 16(87), 225-237. http://fsct.modares.ac.ir/article-7-23801-en.html  (in Persian)
Oduse, K., Campbell, L., Lonchamp, J., & Euston, S. R. (2017). Electrostatic complexes of whey protein and pectin as foaming and emulsifying agents. International Journal of Food Properties, 20(sup3), S3027-S3041. https://doi.org/10.1080/10942912.2017.1396478
Puerta-Gomez, A. F. & Castell-Perez, M. E. (2016). Studies on self-assembly interactions of proteins and octenyl succinic anhydrate (OSA)-modified depolymerized waxy rice starch using rheological principles. Journal of Applied Polymer Science, 133(27). https://doi.org/10.1002/app.43603
Raei, M., Rafe, A., & Shahidi, F. (2018). Rheological and structural characteristics of whey protein-pectin complex coacervates. Journal of Food Engineering, 228, 25-31. https://doi.org/10.1016/j.jfoodeng.2018.02.007
Raoufi, N., Fang, Y., Kadkhodaee, R., Phillips, G. O., & Najafi, M. N. (2017). Changes in Turbidity, Zeta Potential and Precipitation Yield Induced by Persian Gum-Whey Protein Isolate Interactions During Acidification. Journal of Food Processing and Preservation, 41(3), e12975. https://doi.org/10.1111/jfpp.12975
Sadahira, M. S., Lopes, F. C., Rodrigues, M. I., Yamada, A. T., Cunha, R. L., & Netto, F. M. (2015). Effect of pH and interaction between egg white protein and hydroxypropymethylcellulose in bulk aqueous medium on foaming properties. Carbohydr Polym, 125, 26-34. https://doi.org/10.1016/j.carbpol.2015.02.033
Salminen, H., & Weiss, J. (2014). Effect of Pectin Type on Association and pH Stability of Whey Protein—Pectin Complexes. Food Biophysics, 9(1), 29-38. https://doi.org/10.1007/s11483-013-9314-3
Samant, S. K., Singhal, R. S., Kulkarni, P. R., & Rege, D. V. (1993). Protein-polysaccharide interactions: a new approach in food formulations. International Journal of Food Science & Technology, 28(6), 547-562. https://doi.org/10.1111/j.1365-2621.1993.tb01306.x
Santipanichwong, R., Suphantharika, M., Weiss, J., & McClements, D. J. (2008). Core-Shell Biopolymer Nanoparticles Produced by Electrostatic Deposition of Beet Pectin onto Heat-Denatured β-Lactoglobulin Aggregates. Journal of Food Science, 73(6), N23-N30. https://doi.org/10.1111/j.1750-3841.2008.00804.x
Schmitt, C., Sanchez, C., Desobry-Banon, S., & Hardy, J. (1998). Structure and Technofunctional Properties of Protein-Polysaccharide Complexes: A Review. Critical Reviews in Food Science and Nutrition, 38(8), 689-753. https://doi.org/10.1080/10408699891274354
Shogren, R., & Biresaw, G. (2007). Surface properties of water soluble maltodextrin, starch acetates and starch acetates/alkenylsuccinates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298(3), 170-176. https://doi.org/10.1016/j.colsurfa.2006.10.070
Sindayikengera, S., & Xia, W. S. (2006). Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. J Zhejiang Univ Sci B, 7(2), 90-98. https://doi.org/10.1631/jzus.2006.B0090
Stone, A. K., & Nickerson, M. T. (2012). Formation and functionality of whey protein isolate–(kappa-, iota-, and lambda-type) carrageenan electrostatic complexes. Food Hydrocolloids, 27(2), 271-277 https://doi.org/10.1016/j.foodhyd.2011.08.006
Tolstoguzov, V. B. (1991). Functional properties of food proteins and role of protein-polysaccharide interaction. Food Hydrocolloids, 4(6), 429-468. https://doi.org/10.1016/S0268-005X(09)80196-3
Torres, O., Murray, B., & Sarkar, A. (2016). Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science & Technology, 55, 98-108. https://doi.org/10.1016/j.tifs.2016.07.006
Turgeon, S. L., Beaulieu, M., Schmitt, C., & Sanchez, C. (2003). Protein–polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, 8(4), 401-414. https://doi.org/10.1016/S1359-0294(03)00093-1
Vargas-Castro, S., Delgado-Macuil, R., Ruiz-Espinosa, H., Zaca-Moran, P., Rojas-López, M., & Amador-Espejo, G. G. (2018, November 14-16). Characterization of whey protein isolate-kappa carrageenan complex coacervates at different pH levels [Conference presentation]. 8th Food Science, Biotechnology and Safety Congress, Puerto Vallarta, Jalisco, Mexico.
Wagoner, T., Vardhanabhuti, B., & Foegeding, E. A. (2016). Designing Whey Protein-Polysaccharide Particles for Colloidal Stability. Annu Rev Food Sci Technol, 7, 93-116. https://doi.org/10.1146/annurev-food-041715-033315
Wang, J., Su, L., & Wang, S. (2010). Physicochemical properties of octenyl succinic anhydride-modified potato starch with different degrees of substitution. Journal of the Science of Food and Agriculture, 9(3), 424-429 https://doi.org/10.1002/jsfa.3832
Wang, Z., Zhang, S., & Vardhanabhuti, B. (2015). Foaming Properties of Whey Protein Isolate and λ-Carrageenan Mixed Systems. Journal of Food Science, 80(8), N1893-N1902. https://doi.org/10.1111/1750-3841.12940
Weinbreck, F., de Vries, R., Schrooyen, P., & de Kruif, C. G. (2003). Complex Coacervation of Whey Proteins and Gum Arabic. Biomacromolecules, 4(2), 293-303. https://doi.org/10.1021/bm025667n
Wu, B.-c., & McClements, D. J. (2015). Microgels formed by electrostatic complexation of gelatin and OSA starch: Potential fat or starch mimetics. Food Hydrocolloids, 47, 87-93. https://doi.org/10.1016/j.foodhyd.2015.01.021
Zhao, Y., Khalid, N., Shu, G., Neves, M. A., Kobayashi, I., & Nakajima, M. (2019). Complex coacervates from gelatin and octenyl succinic anhydride modified kudzu starch: Insights of formulation and characterization. Food Hydrocolloids, 86, 70-77. https://doi.org/10.1016/j.foodhyd.2018.01.040
CAPTCHA Image
Volume 12, Issue 1
June 2023
Pages 39-54
  • Receive Date: 20 April 2022
  • Revise Date: 31 July 2022
  • Accept Date: 05 August 2022