Document Type : Original Paper

Authors

1 Department of Agricultural and Bioresources Engineering, University of Nigeria, Nsukka, Nigeria

2 Department of Food Science and Technology, University of Nigeria, Nsukka, Nigeria

3 Africa Centre of Excellence for Sustainable Power and Energy Development (ACESPED), University of Nigeria, Nsukka, Nigeria

Abstract

Roselle calyces (Hibiscus sabdariffa) are becoming very important in the food and beverage industry, especially because of the presence of anthocyanin which is an antioxidant responsible for their red colour. The effect of processing parameters such as contact time, temperature and calyx-water ratio on the anthocyanin content of roselle calyces extract was studied and optimized along with evaluation of kinetic models, mass transfer and thermodynamic parameters. Extraction kinetics for anthocyanin were obtained at different time (5, 10 and 15 min), temperature (30, 50, 75 and 100 °C) and calyx-water mass ratio (1:50, 1:20 and 1:10). The maximum anthocyanin yield was obtained at 15 min; 100 °C and ratio of 1:10. The data obtained were fitted to 6 different extraction models and the ones that best suited the data were Weibull type, Peleg and Pseudo-second-order with Adj. R2 of 0.98, 0.99 and 0.99 respectively. The data obtained were used to calculate the kinetic, mass transfer and thermodynamic parameters. The kinetic variables were also related to the fractional extraction or conversion model. The fractional extraction increased with increased temperature and calyx-water. The effective diffusion coefficient ranged between 1.04×10-11 to 1.48×10-11 m2/s. The mass transfer coefficient calculated ranged between 1.62×10-8 and 11.02×10-8 (m/s), Biot number ranges from 25 to 168. The thermodynamic properties: Activation energy ranged from 15.7 to 16.4 kJmol-1; the enthalpy from 36.60 to 58.30 kJmol-1; the entropy from 88 to 147 JK-1mol-1, and the Gibbs free energy from -5.80 to
-11 kJmol-1. The extraction process was observed to be endothermic, feasible and spontaneous.

Keywords

Main Subjects

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/)

Abdelhameed, R. M., Rocha, J., & Silva, A. M. S. (2021). Selective separation of hibiscus acid from Roselle extracts by an amino-functionalized Metal Organic Framework. Journal of Chromatography A, 1636, 461789. https://doi.org/https://doi.org/10.1016/j.chroma.2020.461789
Abidoye, A. O., Ojedokun, F. O., Fasogbon, B. M., & Bamidele, O. P. (2022). Effects of sweet basil leaves (Ocimum basilicum L) addition on the chemical, antioxidant, and storage stability of roselle calyces (Hibiscus sabdariffa) drink. Food Chemistry, 371, 131170. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.131170
Ai, J., Wu, Q., Battino, M., Bai, W., & Tian, L. (2021). Using untargeted metabolomics to profile the changes in roselle (Hibiscus sabdariffa L.) anthocyanins during wine fermentation. Food Chemistry, 364, 130425. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.130425
Alara, O. R., & Abdurahman, N. H. (2019). Kinetics studies on effects of extraction techniques on bioactive compounds from Vernonia cinerea leaf. Journal of food science and technology, 56(2), 580-588. https://doi.org/10.1007/s13197-018-3512-4
Ali, A., Lim, X. Y., Chong, C. H., Mah, S. H., & Chua, B. L. (2018). Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling. Separation Science and Technology, 53(14), 2192-2205. https://doi.org/10.1080/01496395.2018.1443137
Ali, B. H., Al Wabel, N., & Blunden, G. (2005). Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review. Phytotherapy research : PTR, 19(5), 369-375. https://doi.org/10.1002/ptr.1628
Aly, A. A., Ali, H. G. M., & Eliwa, N. E. R. (2019). Phytochemical screening, anthocyanins and antimicrobial activities in some berries fruits. Journal of Food Measurement and Characterization, 13(2), 911-920. https://doi.org/10.1007/s11694-018-0005-0
Amendola, D., De Faveri, D. M., & Spigno, G. (2010). Grape marc phenolics: Extraction kinetics, quality and stability of extracts. Journal of Food Engineering, 97(3), 384-392. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2009.10.033
Basu, A., Rhone, M., & Lyons, T. J. (2010). Berries: emerging impact on cardiovascular health. Nutrition reviews, 68(3), 168-177. https://doi.org/10.1111/j.1753-4887.2010.00273.x
Cissé, M., Bohuon, P., Sambe, F., Kane, C., Sakho, M., & Dornier, M. (2012). Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling. Journal of Food Engineering, 109(1), 16-21. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2011.10.012
Cisse, M., Vaillant, F., Acosta, O., Dhuique-Mayer, C., & Dornier, M. (2009). Thermal Degradation Kinetics of Anthocyanins from Blood Orange, Blackberry, and Roselle Using the Arrhenius, Eyring, and Ball Models. Journal of agricultural and food chemistry, 57(14), 6285-6291. https://doi.org/10.1021/jf900836b
Cisse, M., Vaillant, F., Soro, D., Reynes, M., & Dornier, M. (2011). Crossflow microfiltration for the cold stabilization of roselle (Hibiscus sabdariffa L.) extract. Journal of Food Engineering, 106(1), 20-27. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2011.04.001
Corradini, M. G., & Peleg, M. (2007). Shelf-life estimation from accelerated storage data. Trends in Food Science & Technology, 18(1), 37-47. https://doi.org/https://doi.org/10.1016/j.tifs.2006.07.011
Da-Costa-Rocha, I., Bonnlaender, B., Sievers, H., Pischel, I., & Heinrich, M. (2014). Hibiscus sabdariffa L. - a phytochemical and pharmacological review. Food Chemistry, 165, 424-443. https://doi.org/10.1016/j.foodchem.2014.05.002
Du, C. T., & Francis, F. J. (1973). Anthocyanins of roselle (Hibiscus sabdariffa, L.). Journal of Food Science, 38(5), 810-812. https://doi.org/https://doi.org/10.1111/j.1365-2621.1973.tb02081.x
Janković, S., Mitić, M., Arsić, B., & Stankov-Jovanović, V. (2021). The kinetic and thermodynamic studies of solid-liquid extraction of apigenin-glycosides from parsley (Petroselinum crispum). Separation Science and Technology, 56(13), 2253-2265. https://doi.org/10.1080/01496395.2020.1821219
Jo, Y.-J., & Kim, J.-H. (2019). Effective Diffusivity and Mass Transfer Coefficient during the Extraction of Paclitaxel from Taxus chinensis Using Methanol. Biotechnology and Bioprocess Engineering, 24(5), 818-823. https://doi.org/10.1007/s12257-019-0148-9
Juliani, H. R., Welch, C. R., Wu, Q., Diouf, B., Malainy, D., & Simon, J. E. (2009). Chemistry and quality of Hibiscus (Hibiscus sabdariffa) for developing the natural-product industry in Senegal. Journal of Food Science, 74(2), S113-121. https://doi.org/10.1111/j.1750-3841.2009.01076.x
Jurinjak Tušek, A., Benković, M., Belščak Cvitanović, A., Valinger, D., Jurina, T., & Gajdoš Kljusurić, J. (2016). Kinetics and thermodynamics of the solid-liquid extraction process of total polyphenols, antioxidants and extraction yield from Asteraceae plants. Industrial Crops and Products, 91, 205-214. https://doi.org/https://doi.org/10.1016/j.indcrop.2016.07.015
Lee, W. C., Wang, C. J., Chen, Y. H., Hsu, J. D., Cheng, S. Y., Chen, H. C., & Lee, H. J. (2009). Polyphenol extracts from Hibiscus sabdariffa Linnaeus attenuate nephropathy in experimental type 1 diabetes. Journal of agricultural and food chemistry, 57(6), 2206-2210. https://doi.org/10.1021/jf802993s
Liu, J.-Y., Chen, C.-C., Wang, W.-H., Hsu, J.-D., Yang, M.-Y., & Wang, C.-J. (2006). The protective effects of Hibiscus sabdariffa extract on CCl4-induced liver fibrosis in rats. Food and Chemical Toxicology, 44(3), 336-343. https://doi.org/https://doi.org/10.1016/j.fct.2005.08.003
Matešić, N., Jurina, T., Benković, M., Panić, M., Valinger, D., Gajdoš Kljusurić, J., & Jurinjak Tušek, A. (2021). Microwave-assisted extraction of phenolic compounds from Cannabis sativa L.: optimization and kinetics study. Separation Science and Technology, 56(12), 2047-2060. https://doi.org/10.1080/01496395.2020.1804938
Meftahizadeh, H., Ebadi, M.-T., Baath, G. S., & Ghorbanpour, M. (2022). Variation of morphological and phytochemical traits in Roselle (Hibiscus sabdariffa L.) genotypes under different planting dates. Acta Ecologica Sinica, 42(6), 616-623. https://doi.org/https://doi.org/10.1016/j.chnaes.2021.04.011
Ochoa-Velasco, C. E., & Ruiz, L., II. (2019). Mass transfer modeling of the antioxidant extraction of roselle flower (Hibiscus sabdariffa). Journal of food science and technology, 56(2), 1008-1015. https://doi.org/10.1007/s13197-018-03567-8
Omobuwajo, T. O., Sanni, L. A., & Balami, Y. A. (2000). Physical properties of sorrel (Hibiscus sabdariffa) seeds. Journal of Food Engineering, 45(1), 37-41. https://doi.org/https://doi.org/10.1016/S0260-8774(00)00039-X
Park, S.-H., & Kim, J.-H. (2018). Isotherm, Kinetic, and Thermodynamic Characteristics for Adsorption of 2,5-Xylenol onto Activated Carbon. Biotechnology and Bioprocess Engineering, 23(5), 541-549. https://doi.org/10.1007/s12257-018-0259-8
Peleg, M. (1988). An Empirical Model for the Description of Moisture Sorption Curves. Journal of Food Science, 53(4), 1216-1217. https://doi.org/https://doi.org/10.1111/j.1365-2621.1988.tb13565.x
Rakotondramasy-Rabesiaka, L., Havet, J.-L., Porte, C., & Fauduet, H. (2010). Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Separation and Purification Technology, 76(2), 126-131. https://doi.org/https://doi.org/10.1016/j.seppur.2010.09.030
Rose, P. M., & Kintner, R. C. (1966). Mass transfer from large oscillating drops. AIChE Journal, 12(3), 530-534. https://doi.org/https://doi.org/10.1002/aic.690120325
Sabbaghi, H., Ziaiifar, A. M., & Kashani-Nejad, M. (2017). Mechanical study for texture degradation of potato strip during frying process. Iranian Food Science and Technology Research Journal, 13(1), 92-104. https://doi.org/10.22067/ifstrj.v1395i0.48350 (in Persian)
Sabbaghi, H., Ziaiifar, A. M., & Kashani-Nejad, M. (2018a). Degradation kinetic of vitamin C (L-ascorbic acid) during simultaneous infrared dry-blanching and dehydration of apple slices with intermittent heating method. Iranian Food Science and Technology Research Journal, 14(5), 789-802. https://doi.org/10.22067/ifstrj.v14i5.69053 (in Persian)
Sabbaghi, H., Ziaiifar, A. M., & Kashani-Nejad, M. (2018b). Fractional conversion modeling of color changes in apple during simultaneous dry-blanching and dehydration process using intermittent infrared irradiation. Iranian Food Science and Technology Research Journal, 14(2), 383-397. https://doi.org/10.22067/ifstrj.v0i0.62293 (in Persian)
Sabbaghi, H., Ziaiifar, A. M., & Kashaninejad, M. (2018). Modeling of Mass Transfer in the Drying Process of Apple Slices Using Infrared Irradiation with Intermittent Heating Method. Research and Innovation in Food Science and Technology, 7(1), 75-88. https://doi.org/10.22101/jrifst.2018.05.19.716 (in Persian)
Sant’Anna, V., Brandelli, A., Marczak, L. D. F., & Tessaro, I. C. (2012). Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Separation and Purification Technology, 100, 82-87. https://doi.org/https://doi.org/10.1016/j.seppur.2012.09.004
Shi, J., Yu, J., Pohorly, J., Young, J. C., Bryan, M., Wu, Y., & Canada, A.-f. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution.
Simeonov, E., Tsibranska, I., & Minchev, A. (1999). Solid–liquid extraction from plants-experimental kinetics and modelling. Chemical Engineering Journal, 73(3), 255-259. https://doi.org/https://doi.org/10.1016/S1385-8947(99)00030-3
Sindi, H. A., Marshall, L. J., & Morgan, M. R. A. (2014). Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chemistry, 164, 23-29. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.04.097
Tao, Y., Zhang, Z., & Sun, D.-W. (2014). Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrasonics Sonochemistry, 21(4), 1461-1469. https://doi.org/https://doi.org/10.1016/j.ultsonch.2014.01.029
Wrolstad, R. E. (2004). Anthocyanin Pigments—Bioactivity and Coloring Properties. Journal of Food Science, 69(5), C419-C425. https://doi.org/https://doi.org/10.1111/j.1365-2621.2004.tb10709.x
Xu, D.-P., Zheng, J., Zhou, Y., Li, Y., Li, S., & Li, H.-B. (2017). Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chemistry, 217, 552-559. https://doi.org/https://doi.org/10.1016/j.foodchem.2016.09.013
Yedhu Krishnan, R., Neelesh Chandran, M., Vadivel, V., & Rajan, K. S. (2016). Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula. Separation and Purification Technology, 170, 224-233. https://doi.org/https://doi.org/10.1016/j.seppur.2016.06.039
CAPTCHA Image