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Abstract 
Roselle calyces (Hibiscus sabdariffa) are becoming very important 
in the food and beverage industry, especially because of the 
presence of anthocyanin which is an antioxidant responsible for 
their red colour. The effect of processing parameters such as 
contact time, temperature and calyx-water ratio on the anthocyanin 
content of roselle calyces extract was studied and optimized along 
with evaluation of kinetic models, mass transfer and 
thermodynamic parameters. Extraction kinetics for anthocyanin 
were obtained at different time (5, 10 and 15 min), temperature 
(30, 50, 75 and 100 C) and calyx-water mass ratio (1:50, 1:20 and 
1:10). The maximum anthocyanin yield was obtained at 15 min; 
100 C and ratio of 1:10. The data obtained were fitted to 6 
different extraction models and the ones that best suited the data 
were Weibull type, Peleg and Pseudo-second-order with Adj. R2 of 
0.98, 0.99 and 0.99 respectively. The data obtained were used to 
calculate the kinetic, mass transfer and thermodynamic parameters. 
The kinetic variables were also related to the fractional extraction 
or conversion model. The fractional extraction increased with 
increased temperature and calyx-water. The effective diffusion 
coefficient ranged between 1.04×10-11 to 1.48×10-11 m2/s. The mass 
transfer coefficient calculated ranged between 1.62×10-8 and 
11.02×10-8 (m/s), Biot number ranges from 25 to 168. The 
thermodynamic properties: Activation energy ranged from 15.7 to 
16.4 kJmol-1; the enthalpy from 36.60 to 58.30 kJmol-1; the entropy 
from 88 to 147 JK-1mol-1, and the Gibbs free energy from -5.80 to 
-11 kJmol-1. The extraction process was observed to be 
endothermic, feasible and spontaneous. 
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.
Introduction 
Roselle plant (Hibiscus sabdariffa) known 
as zobo in Nigeria is usually cultivated for 
its calyces, though the seeds and leaves are 

also useful (Omobuwajo et al., 2000). 
Roselle calyces usually found in West 
Africa, Asia and South America is an 
underutilized food material that has a lot of 
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potentials (Meftahizadeh et al., 2022). The 
calyces are known for its nutritional 
benefits due to the presence of antioxidants, 
organic acids, vitamins and minerals 
(Abdelhameed et al., 2021; Abidoye et al., 
2022; Da-Costa-Rocha et al., 2014). From 
literature, it has numerous health benefits 
and these include reduction of risks of 
coronary heart disease, cancer, and stroke 
(Lee et al., 2009; Liu et al., 2006; Wrolstad, 
2004). There are ongoing studies on its 
potential in the production of fruit drinks 
(Ai et al., 2021). The export value is very 
high. Its extract can be used as a raw 
material in the beverage and food industry 
(Cisse et al., 2011). 

Anthocyanin which is responsible for the 
red coloring of the calyces is an antioxidant 
that is very beneficial to humans. They 
occur in the calyces mainly in the form of 
delphinidin-3-sambubioside and cyanidin-
3-sambubioside (Cissé et al., 2012; Juliani 
et al., 2009) and occur in minor compounds 
in the form of delphinidin-3-glucoside and 
cyandin-3-glucoside (Ali et al., 2005). They 
are water soluble pigments that are also 
found in fruits such as grapes, tomatoes, 
raspberry, cranberry etc. (Alara & 
Abdurahman, 2019; Basu et al., 2010). 

Solid-liquid extraction is the ideal means 
for the separation of bioactive components 
with antioxidant ability from plant 
resources (Ochoa-Velasco & Ruiz, 2019). 
Numerous factors influence the extraction 
technique, and the outcome should be 
determined experimentally and a number of 
models, including empirical and theoretical 
models, have been defined to investigate 
extraction data. Empirical models 
predominantly comprise response surface 
equations, which are used to define the 
influence of processing variables such as 
contact time, process temperature and 
solvent-to-solute ratio on particular 
parameters of the extraction procedure, 
such as the quantity or outcome of the 
precise constituents under study (Alara & 
Abdurahman, 2019; Xu et al., 2017), 
though, these equations do not offer facts 
about their dynamic or mass transfer 
properties. 

Mathematical modelling of solid–liquid 
extraction processes is an essential 
engineering technique in the design process 
which aims to reduce energy, time, and 
materials consumption (Jurinjak Tušek et 
al., 2016; Matešić et al., 2021). Kinetic 
modelling is of great importance for 
understanding complex diffusion, mass 
transfer and thermodynamic parameters 
affecting the extraction. Some of the models 
used include Peleg (Peleg, 1988), Second 
order (Jo & Kim, 2019; Park & Kim, 2018) 
and Weibull (Sant’Anna et al., 2012). 
Effective diffusion coefficients, extraction 
rates and thermodynamic parameters of the 
extraction process can be calculated using 
the mentioned models (Janković et al., 
2021; Jurinjak Tušek et al., 2016). Gibbs 
free energy signifies the useful work 
obtainable from a thermodynamic system at 
constant temperature and pressure, and the 
free energies of the various components of 
the extraction must be established in order 
to estimate Gibbs energies during chemical 
transformations (Janković et al., 2021). 

The mass transfer properties of 
anthocyanins from roselle calyces have 
been examined by several researchers 
(Cisse et al., 2011; Ochoa-Velasco & Ruiz, 
2019). However, those properties and 
thermodynamic characteristics of whole 
calyces were not reported. The aim of this 
study was optimization of anthocyanin 
extraction from roselle (Hibiscus 
sabdariffa) calyces, and for this purpose, 
the objectives were (i) determine the 
response surface models of anthocyanin 
content in the extract as a function of 
processing variables (contact time, process 
temperature and calyx-water ratio); (ii) to 
perform curve-fitting of the experimental 
data to extraction models and finally (iii) 
determine the kinetic and thermodynamic 
parameters of the extraction process. 
 
Materials and methods 
Sample preparation 
Dried roselle calyces were purchased from 
Ogbete main market in Enugu, Nigeria. 
They were portioned into 5, 12.50, and 25 g 
and immersed in a conical flask with 250 
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mL distilled water. Distilled water was used 
as the solvent because it was established to 
be the most suitable for the extraction of 
bioactive materials from the calyces (Sindi 
et al., 2014). The calyx water mass ratio 
was 1:50, 1:20 and 1:10. The extraction 
temperatures were 30, 50, 75 and 100 C 
and the extraction times were 5, 10 and 15 
min. A water bath system with temperature 
control was set up and used to prepare the 
samples as shown in Fig. (1). The heater 
(1000W 220V, FP-234, China) raises the 
temperature of the water in the bath, while 
the thermocouple (K-type) senses the 
temperature of the calyx-water mixture. It 
then sends a signal to the temperature 
controller (REX C900, Thincol, China) 
which sends to the contactor (32 amps 
220V). When the temperature gets to the set 
point, the circuit breaker trips off the 
current from the power source till the 
temperature go 1 C below the set point. 
After the set time for the extraction, the 
extract was separated from the raffinate 
using a filter paper (Grade 1 Whatman 125 
mm). A total of 36 samples were collected 
and labeled accordingly and stored at 4 C 
for further analysis.  

 

 
Fig. 1. Experimental setup for aqueous extraction 
of roselle calyces 
 
Anthocyanin tests 
Total anthocyanins content of Roselle 
extract was determined colorimetrically 
according to the procedure described by 

Aly et al. (2019) and Du & Francis (1973). 
5 mL of the sample was diluted with 
distilled water to 50 mL. Acidified 
methanol (1% HCl) was used to extract 
anthocyanin from the solution. A UV Vis 
spectrophotometer (UV-1200, Kyoto, 
Japan) was used to measure the absorbance 
of the clear filtered pigment solution at 535 
nm, where the molecular weight of cyanidin 
3-O-glucoside was 449.2 gmol-1 and the 
molar extinction coefficient was 26.900 
L.mol/cm. The total anthocyanins content 
referred to cyaniding 
-3-sambubioside was calculated using the 
Eq. (1). The tests were carried out in 
triplicates. 

(1) 
(100݃/݃݉)݊ܣ = ௔×ௗ௙×ଵ଴଴

௠×ହହ.ଽ
  

 
Where, An is total anthocyanin, a is 

absorbance, df is dilution factor and m is 
sample weight. 
 
Response surface methodology 
The analyzed results were subjected to 
statistical analysis using Design expert 11. 
A 3×4×3 factorial composite design was 
conducted in triplicates of central point to 
determine the effect of extraction contact 
time, process temperature and calyx-water 
solvent on the anthocyanin content of the 
extract. 

The response surface can be represented 
in this second order polynomial in Eq. (2). 

(2) 
ܣ = ଴ܣ + ଵܺܣ + ଶܻܣ + ଷܺܣ + ଵଶܻܺܣ + ଵଷܼܺܣ +
ଶଷܻܼܣ + ଵଵܺଶܣ + ଶଶܻଶܣ +   ଷଷܼଶܣ
 

Where, ܣ is the anthocyanin content, X, 
Y and Z are the coded values of extraction 
time, temperature and calyx-water ratio 
respectively, A0, A1, A2, A3, A12, A13, A23, 
A11, A22 and A33 are regression coefficients. 
 
Extraction yields 
The extraction yield is as shown in Eq. (3). 

(3) 
ܻ = ௠೐

௠೎
   

Where Y is extraction yield, me is mass 
of anthocyanin in extract and mc is mass of 
anthocyanin in calyces. 
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Table 1. Extraction models used for this study 
Model name Equation Source 

Weibull type ܥ =  (௡ݐ݇)݌ݔ௢݁ܥ
 (Sant’Anna et al., 2012)  

Two rates ܥ = 1]ܣ − [(ݐܤ−)݌ݔ݁ + 1]ܥ −   (Amendola et al., 2010) [ݐ(ܦ−)݌ݔ݁

Sorption/Desorption (Peleg) ܥ =
1

݇ଵ + ݇ଶݐ 
(Corradini & Peleg, 2007; 

Matešić et al., 2021)  

Minchev and Minkor ܥ = ܣ −  ;Amendola et al., 2010) (ݐ݇−)݌ݔ݁ܤ
Simeonov et al., 1999)  

Pseudo first order ܥ = ஶܥ −
ஶܥ

ݐ݇)݌ݔ݁ + ܽ) (Jo & Kim, 2019)  

Pseudo 2nd order ܥ =
ஶܥ

ଶ ݐ݇
1 +  ݐஶ݇ܥ

(Jo & Kim, 2019; Park & Kim, 
2018)  

 
Kinetic modeling 
Mathematical modelling was employed to 
investigate the kinetics of the solid-liquid 
extraction process. Experimental data were 
fitted to different extraction kinetic models 
namely Weibull type, two rates, 
Sorption/Desorption (Peleg), Minchev and 
Minkor, pseudo first order and pseudo 2nd 
order (Table 1) using non-linear 
regression, minimizing the squared errors 
by using Gauss-Newton method from 
Curve Expert Professional. Adjusted R2 
and root mean square error (RMSE) were 
used to estimate how well these models 
represent the experimental data. 

According to (Sabbaghi, Ziaiifar, et al., 
2018b), the following equations Eq. (4) 
and Eq. (5) are used for calculating Adj R2 
and RMSE, respectively. In these 
equations, o and P are observed value and 
predicted value, respectively, n is the 
number of observations and p is the 
number of model parameters. 

(4) 
ଶܴ ݆݀ܣ = ܴଶ − ௣ିଵ

௡ି௣
(1 − ܴଶ)           

(5) 
ܧܵܯܴ = ට(௢ି௉)మ

௡ି௣
  

 
Fractional extraction 
Fractional extraction follows fractional 
conversion models. The fractional 
conversion model indicates the amount of 
reaction required at a given time to 
complete a phenomenon (Sabbaghi, 
Ziaiifar, et al., 2018b). Fractional 
extraction is calculated using Eq. (6). 

(6) 
ܧ = ஼೔ି஼೑

஼೔ି஼೐
=    [ݐ݇−]݌ݔ݁

Where ܧ is fractional extraction, Ci is 
initial concentration, Cf is final 
concentration, Ce is equilibrium 
concentration, k is rate constant and t is 
time.  
 
Effective diffusion coefficient 
Fick’s second law (Eq. 7) was used to 
describe anthocyanin diffusion from inside 
the spherical biomass to the surface during 
the extraction process (Yedhu Krishnan et 
al., 2016). 

(7) 
௒೟
௒ೞ

= 1 − ଺
గమ ݌ݔ݁ ቀ− ஽೐గమ௧

௥మ ቁ  

 
Taking the natural logarithm of the 

equation, Eq. (8) is obtained. 
(8) 

݈݊ ቀ௒೟
௒ೞ

ቁ = ݈݊ ଺
గమ − ஽೐గమ௧

௥మ   
 

Where, Yt is yield of anthocyanin at 
time t (kg dry matter/kg solvent), Ys is the 
yield at saturation state (kg dry matter/kg 
solvent), De is effective diffusion 
coefficient (m2/s), t is time (s) and r is cell 
radius (m); De is calculated from each 
slope by plotting ln ቀ௒೟

௒ೞ
ቁ versus t. 

 
Mass transfer coefficient 
Analytical expression of diffusive mass 
flux based on Fick’s first law was used to 
describe the mass transfer of anthocyanin 
from the surface to the solvent (Yedhu 
Krishnan et al., 2016). 

(9) 
݈݊

௦ܥ

௦ܥ − ௧ܥ
=

ܣ்ܯ
௟ܸ

 ݐ
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Cs, is concentration at saturation (g/L), 
Ct concentration at time t (g/L), MT mass 
transfer coefficient (m/s), A total surface 
area of particles (m2) and vl volume of 
solution (m3). MT is calculated from the 
slope of ln ஼ೞ

஼ೞି஼೟
 versus t. 

 
Biot number 
To analyse the behaviour of mass transfer, 
dimensionless Biot numbers were used to 
characterize the diffusion parameters 
during extraction. The Biot number is a 
ratio of internal and external diffusion 
resistance that connects relative transport 
resistances for solid extraction in liquid 
phase. (Jo & Kim, 2019). Eq. (10) was 
used to obtain the Biot number (Bi) for the 
solid-liquid extraction process. Where Ps is 
particle size (m). 

(10) 
݅ܤ = ௉ೞெ೅

஽೐
  

 
Thermodynamic study 
Activation Energy 
Using the Arrhenius equation (Eq. 11) and 
its linear form as (Eq. 12) according to  
Sabbaghi, Ziaiifar, et al. (2018a) and 
Sabbaghi, Ziaiifar and Kashaninejad 
(2018), the activation energy was 
determined, which was used to illustrate 
the temperature-extraction rate constant 
relationship. 

(11) 
݇ = ಶೌି݁ܣ

ೃ೅ 
(12) 

ln (݇) = ln (ܣ) − ቀாೌ
ோ

ቁ ଵ
்
  

 
Where, k is the extraction coefficient 

(min-1), A is the pre-exponential factor 
(min-1), Ea is the activation energy (kJmol-
1), R is the gas constant (8.314 Jmol-1K-1), 
and T is the absolute temperature (K).  

A plot of ln(k) versus ଵ
்
 gives a straight 

slope where ቀ− ாೌ
ோ

ቁ represents the 
activation energy of the extraction process 
and the intercept is the Arrhenius constant 
(or pre-exponential factor). 

 

Equilibrium constant 
The equilibrium constant is calculated 
using Eq. (13). 

(13) 
݇௘ = ஼ಽ

஼ೞ
  

 
Where, ke is the equilibrium constant, 

CL is the concentration of anthocyanin in 
the extract and Cs is the concentration of 
anthocyanin in the calyces. 

Enthalpy change, entropy change and 
Gibbs free energy change. The major 
driving factor of the solid liquid extraction 
process was diffusion of the solute from 
the solid into the liquid solvent. The 
standard enthalpy of formation and the 
standard entropy of the compound can be 
used to calculate the standard free energy 
of formation (Janković et al., 2021), as 
indicated in Eq. (14). 

(14) 
ܩ∆ = −ܴ݈ܶ݊݇௘   
 

Where G is standard Gibbs free 
energy change (kJmol-1). The change in 
enthalpy and entropy was calculated using 
Van’t Hoff equation (Jurinjak Tušek et al., 
2016) shown in Eq. (15). 

(15) 
ܩ∆ = ܪ∆ − ܶ∆ܵ  
 

H is standard enthalpy change (kJmol-
1), and S is the standard entropy change 
(JK-1mol-1). Combining Eq. (14) and (15) 
we get Eq. (16). 

(16) 
௘ܭ݈݊ = ∆ீ

ோ்
= − ∆ு

ோ்
+ ∆ௌ

ோ
  

 
H and S was gotten by using the 

slope and y-intercept of the plot lnKe 

against ଵ
்
, centered on Eq. (16). 

 
Results and discussion 
Effects of extraction time, temperature and 
calyx-water ratio 
It was generally observed that elevated 
temperature increases the anthocyanin 
concentration of the extract; this is as a 
result of increased solubility which 
facilitates the diffusion of the anthocyanin 
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from the calyces to the solvent. This trend 
was reported by researchers for paclitaxel 
extraction from Taxus chinensis (Jo & 
Kim, 2019). The yield also increased with 
higher calyx water ratio except at 100 C 
where the yield reduced from 1:20 to 1:10. 
This may be as a result of the increased 
saturation at high temperatures of the 
anthocyanin. Fig (2) show the 3D response 
surface of extraction, the effect of time 
temperature and calyx-water ratio on the 
extraction yield. A rise of the solvent 
volume in the system increased the 
extraction yield leading to a more efficient 
extraction. These results were consistent 
with the equilibrium and mass transfer 
principles. The driving force during mass 
transfer was the concentration gradient 
between solid and liquid which was greater 
for larger liquid-to-solid ratio, resulting in 
an increase of the diffusion rate (Figs. 2B 
and 2C). 

The ANOVA shows that the extraction 
time, temperature and mass ratio of the 
calyx-solvent ratio had a significant linear 

and interaction effect on the anthocyanin 
content of the extract. Only temperature 
and calyx-solvent ratio had a significant 
quadratic effect on the anthocyanin 
content.  

(17) 
݊ܣ = 3.10 − ݐ0.04 − 0.19ܶ + 0.01݉ + ܶݐ0.003 +

݉ݐ0.002 + 0.001ܶ݉ − ଶݐ0.004 + 0.001ܶଶ −
0.0005݉ଶ  

ܴଶ = 0.94 
 

An increase of the extraction 
temperature resulted in higher yield of 
anthocyanin, This could be due to the 
softening of plant tissue as reported by 
other researchers (Ali et al., 2018; Shi et 
al., 2003).  

A decline in anthocyanin content of the 
extract was not detected as reported by 
Cissé et al. (2012). This could be because 
the extraction time during the experiment 
was not extended beyond 15 min which 
can bring about destruction of the 
anthocyanin molecule. 
 

 

  

 
Fig. 2. 3D response surface of the extraction of anthocyanin (A) function of time and temperature, (B) function 
of time and calyx-solvent ratio and (C) function of temperature and calyx-solvent ratio 
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Table 2. Kinetic parameters for Pseudo-second-order model 

Temperature calyx-water 
ratio 

Ce×10-2 

(g/L) 
k×10-3 

(L/g.min) E Adj. R2 RMSE 

30 
1:50 4.31 56.72 0.42 0.99 0.00 
1:20 16.60 36.70 0.57 0.99 0.02 
1:10 58.10 1.23 0.98 0.99 0.02 

50 
1:50 9.08 51.80 0.46 0.99 0.02 
1:20 18.90 29.60 0.64 0.99 0.02 
1:10 60.90 0.85 0.98 0.99 0.04 

75 
1:50 10.90 23.40 0.70 0.97 0.02 
1:20 24.20 14.70 0.80 0.97 0.08 
1:10 85.21 0.61 0.99 0.99 0.06 

100 
1:50 11.76 19.85 0.74 0.99 0.5 
1:20 34.52 12.80 0.82 1.00 0.03 
1:10 91.25 0.39 0.99 0.99 0.04 

Ce is equilibrium concentration, k is rate constant, and E is fractional extraction 
 
Table 3. Kinetic parameters for Weibull model 

Temperature Water-calyx 
ratio C0×10-5 (g/L) k (min-1) n×10-2 Adj. R2 RMSE 

30 
1:50 2.02 6.41 11.90 0.99 0.10 
1:20 3.50 6.52 13.20 1.00 0.13 
1:10 3.94 6.64 15.90 0.99 0.35 

50 
1:50 2.36 6.13 14.40 0.99 0.16 
1:20 4.23 6.68 17.50 0.99 0.09 
1:10 5.00 6.96 20.50 0.99 0.53 

75 
1:50 4.33 7.15 16.50 0.97 0.36 
1:20 6.16 7.32 19.00 0.99 0.36 
1:10 9.27 8.33 22.90 0.99 0.66 

100 
1:50 5.57 7.72 20.60 0.97 0.84 
1:20 7.30 8.74 24.80 0.99 0.64 
1:10 10.37 9.01 29.70 1.00 0.52 

Kinetic modelling 
Tables (2), (3) and (4) show the kinetic 
parameters for Pseudo-second-order, 
Weibull and Peleg respectively. These 
models were fitted to all sets of 
experimental data with the average adj. R2 
of 0.99, 0.99 and 0.98 respectively and were 
used to describe the kinetics of extraction of 
anthocyanin from roselle calyces. Two 
rates, Minchev and Mincor and Pseudo first 
order models could not fit all the sets of 
experimental data and so they were dropped 
from being used for further analysis. In 
Pseudo-second-order model, the 
equilibrium concentration (Ce) was seen to 
increase with increased temperature and 
increased calyx-water ratio while the rate 
constant (k) decreased with increased 
temperature and increased calyx-water ratio 
(Table 2). This trend was similar to what 

was reported by Jo & Kim (2019). This 
enhanced extraction efficiency is due to the 
increase in anthocyanin’s solubility with 
increasing temperature. The initial high 
extraction rate is due to the availability of a 
robust dynamic force of fresh solvent but 
later on the extraction rate lowers due to 
higher resistance of solute to move from the 
spent calyces to the liquid extract. The 
Peleg’s constants reduced with increased 
temperature (Table 4), this trend was 
observed by Jurinjak Tušek et al. (2016). 
An increase in the mass ratio of the calyx to 
water also reduced the initial rate constant 
(k1) and capacity constant (k2) of the model. 
Fig. (3) show the anthocyanin content at the 
temperatures 30, 50, 75 and 100 C 
respectively using the Pseudo-second-order 
equation. 
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Researchers relate many reactions and 
changes to fractional conversion models 
(Rose & Kintner, 1966; Sabbaghi, Ziaiifar, 
et al., 2018b). The rate constant obtained 
using the Pseudo-second order model was 
used to calculate the fractional extraction 

and the results are presented in Table (2). 
The fractional extraction increased and 
tends towards zero as the temperature and 
calyx-water ratio increased. This trend is 
similar to what was obtained by Sabbaghi 
et al. (2017).  

 
Table 4. Kinetic parameters for Peleg model 

Temperature Water-calyx 
ratio k1×102 (min.L/g) k2 (L/g) Adj. R2 RMSE 

30 
1:50 41.10 27.80 0.99 0.07 
1:20 33.50 22.80 1.00 0.01 
1:10 9.40 18.10 0.99 0.26 

50 
1:50 21.40 15.10 0.99 0.13 
1:20 10.20 10.90 0.99 0.24 
1:10 3.50 5.30 0.99 0.40 

75 
1:50 20.40 12.50 0.97 0.29 
1:20 5.47 7.40 0.99 0.39 
1:10 1.34 3.30 0.99 0.67 

100 
1:50 2.20 8.90 0.97 0.66 
1:20 0.37 6.90 1.00 0.32 
1:10 0.04 2.50 0.99 0.48 

k1 is rate constant at the beginning of the extraction, k2 is capacity constant which represents the maximum 
anthocyanin concentration in the entire extraction process. 
 
 

 
Fig. 3. Effect of calyx-water ratio on the anthocyanin content at 30 (A), 50 (B), 75 (C) and 100 C (D) 
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Table 5. Coefficient of effective diffusion, Mass transfer coefficient and Biot number for the extraction of 
anthocyanin from roselle calyces at different temperatures and calyx-water mass ratio 

Mass ratio Temp Deff×10-11 (m2/s) MT×10-8 (m/s) Biot number 

1:50 

30 1.24 9.22 164.47 
50 1.37 10.20 133.50 
75 1.43 10.70 148.15 
100 1.48 11.02 147.81 

1:20 

30 1.04 3.93 74.88 
50 1.06 4.09 76.49 
75 1.11 3.95 70.52 
100 1.39 3.98 56.69 

1:10 

30 1.04 1.87 35.65 
50 1.08 1.84 33.67 
75 1.22 1.73 28.03 
100 1.24 1.62 25.81 

 
Mass transfer parameters 
The coefficient of effective diffusion (Deff) 
increased with increasing temperature as 
seen in Table (5). While the increase in 
diffusion coefficient may be credited to 
increased thermal energy at higher 
temperatures, the increase in mass transfer 
coefficient could be attributed to both 
increase in diffusion coefficient and 
decrease in viscosity. This could probably 
explain the higher influence of temperature 
on mass transfer coefficient than that on 
diffusion coefficient. Hence, the mass 
transfer Biot number increased with 
temperature. The higher values of Biot 
number (>50) which occurred at mass ratio 
of 1:50 and 1:20, indicates the external 
resistances for mass transfer is insignificant 
confirming efficient mixing between solute 
and solvent at those ratios (Tao et al., 2014) 
and therefore, internal transfer is rate-
limiting (Rakotondramasy-Rabesiaka et al., 
2010). 
 
Thermodynamic study 
Activation energy 
As one of the best performing models, the 
extraction constant obtained from the Peleg 
model was used to determine the activation 
energy of anthocyanin during extraction. 
The activation energy was evaluated and 
shown in Table (6). It ranged from 51.40 to 
62.10 kJmol-1 and this is similar to the 
range obtained for anthocyanin in roselle 
extract which ranged between 47 and 61 
kJmol-1 as reported by Cisse et al. (2009). 
The activation energy decreased as the 

calyx-water ratio increased. The Arrhenius 
plot is as shown in Fig. (4). 
 
Table 6 Activation energies at different calyx-water 
ratios 

Ratio Ea 
(kJmol-1) Adj. R2 RMSE 

1:50 62.10 0.94 0.78 
1:20 58.80 0.95 0.82 
1:10 51.40 0.94 0.99 

 

 
Fig. 4. Arrhenius plot using constants from Peleg 
sorption-desorption model 
 
Gibbs, Free enthalpy and Entropy 
The values of the thermodynamic 
parameters obtained are shown in Table (7). 
The enthalpy change was seen to be 
positive indicating that the process is 
endothermic which means that the process 
requires an external source of energy to 
speed it up. The value is in the range of 36 
to 58 kJmol-1 and this is similar to what was 
obtained by Jurinjak Tušek et al. (2016) 
which was within the range of 32 to 67 
kJmol-1 for total phenol from Asteraceae 
plants. 

T-1(K-1)

0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034

-ln
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Table 7. Thermodynamic Parameters 

Time (min) Mass 
ratio 

ΔH 
(kJmol-1) 

ΔS 
(JK-1mol-1) ΔG (kJmol-1) Adj. R2 RMSE 

5 
1:50 57.90 138.00 -11.30 0.86 1.09 
1:20 53.30 130.90 -7.50 0.96 0.73 
1:10 48.50 118.50 -7.00 1.00 0. 22 

10 
1:50 58.30 137.60 -8.80 0.92 0.94 
1:20 50.10 128.20 -7.10 0.99 0.46 
1:10 37.00 88.70 -5.80 0.99 0.39 

15 
1:50 48.60 122.00 -7.70 0.97 0.64 
1:20 46.90 112.30 -5.90 0.98 0.52 
1:10 36.40 88.90 -6.60 0.96 0.61 

ΔH is enthalpy, ΔS is entropy, ΔG is Gibbs free energy 
 

During extraction, the anthocyanin 
molecules diffuse into the solvent thereby 
increasing the entropy of the mixture. The 
entropy, which ranged between 88 and 138 
JK-1mol-1 is positive and this indicates that 
the reaction is irreversible and spontaneous 
due to the increased degree of randomness 
of the anthocyanin molecules dissociated 
from the calyces into the solvent. The 
values of ΔS obtained were higher than 
what was obtained by Yedhu Krishnan et 
al. (2016) for flavonoids from Terminalia 
bellerica which was 54 JK-1mol-1. The 
entropy decreased as calyx-water ratio 
increased and as contact time increased. 
The Gibbs free energy change is negative 
which indicates that the reaction is feasible 
and spontaneous. It ranged between -5 and -
11 kJmol-1 which is a little less than what 
was obtained by Yedhu Krishnan et al. 
(2016) which ranged between -1 and -4 
kJ.mol. 
 
Conclusions 
Extraction time, temperature and calyx 
-water ratio were observed to have linear, 
interaction and quadratic significant 
(P<0.01) effects on the anthocyanin 
Content of the extract. Pseudo-second 
-order, Weibull and Peleg models 
reasonably described the extraction data. 
The equilibrium concentration increased 
with increased temperature and calyx-water 
mass ratio. The kinetic variables were also 
related to the fractional extraction or 
conversion model. The fractional extraction 
increased with increased temperature and 
calyx-water ratio. The effective diffusion 
coefficient and mass transfer coefficient 

increased with increased temperature and 
reduced with increased calyx-water ratio. 
While the Biot number reduced with 
increased temperature and calyx-water 
ratio. The enthalpy and entropy reduced 
with increased time and vice versa. The 
extraction process was seen to be 
endothermic, feasible and spontaneous. 
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  چکیده
 آنتوسیانین وجود دلیلبه ویژهبه یافتن است،در حال اهمیت بسیار نوشیدنی و غذایی صنایع در) Hibiscus sabdariffa(ترش گل چاي

 میزان بر آب این گل به نسبت و دما تماس، زمان مانند وريافر پارامترهاي تأثیر. بخشدقرمز می اکسیدان است که به این گل رنگآنتی که
 .گرفت قرار سازيبهینه و ترمودینامیکی، موردمطالعه پارامترهاي و جرم انتقال جنبشی، هايهمراه با ارزیابی مدل گل، ةعصار آنتوسیانین

 جرم نسبت و) گراددرجۀ سانتی 100 و 75 ،50 ،30( دما ،)دقیقه 15 و 10 ،5( مختلف هايآنتوسیانین در زمان استخراج جنبشی براي
 و گراددرجۀ سانتی 100 دماي دقیقه15 مدت زمان در آنتوسیانین عملکرد حداکثر. صورت گرفت) 1:10 و 1:20 ،1:50( آب ترش بهچاي

 هاداده براي وجه بهترین به که هاییمدل و شد داده برازش مختلف استخراج مدل 6 در آمدهدستبه هايداده. آمددستهب 1:10نسبت 
 .بود 99/0 و 99/0 ،98/0 ترتیببه 2R. بودند Adj همراه )order-second-Pseudoدوم ( مرتبه شبه و وایبول، پلگ نوع بودند، ترمناسب

 به نیز جنبشی متغیرهاي. گرفت قرار استفاده مورد ترمودینامیکی و جرم انتقال جنبشی، پارامترهاي ۀمحاسب براي آمدهدستبه هايداده
- 10 بین ثرؤم نفوذ ضریب .یافت افزایش ترشگل چاي و دما افزایش با کسري استخراج. بودند مرتبط تبدیل یا کسري استخراج مدل
 بود،) متر بر ثانیه( 8-10×02/11 و 8-10×62/1 بین شدهمحاسبه جرم انتقال ضریب. بود ثانیه بر مترمربع 48/1×11-10 تا 04/1×11

 انرژي و بر مول گرمکیلوژولبر  147 تا 88 از آنتروپی مول، بر کیلوژول 30/58 تا 60/36 از آنتالپی. است متغیر 168 تا 25 از Biot تعداد
 خود و پذیرامکان گرماگیر، صورتبه استخراج یندااین تحقیق، فر هايهبراساس مشاهد .بر کیلوژول مول -11 تا -80/5از گیبس آزاد

  .درنظرگرفته شد

  جنبشی سازي، مدل)RSM( پاسخ سطح روشانتقال جرم، ، کسري استخراج، آنتوسیانین :کلیدي هايواژه
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