Nutritional Profile, Antioxidant Capacity and Physicochemical Properties of Processed Labeo bata

Document Type : Original Paper

Authors

1 Department of Food Science and Nutrition, Nehru arts and Science College, Coimbatore, 641103, India

2 Department of Nutrition and Dietetics, Mount Carmel College, Autonomous, Bengaluru, Karnataka 560052, India

3 Department of Microbiology, Sri Lakshmi Narayana Institute of Medical Sciences, Puducherry 605502, India

Abstract

Fish has been a potential food source for humans. Labeo bata is a commonly consumed fresh water fish species, particularly in South India.  This study explored the effect of different cooking (boiling, steaming, microwaving, and frying) on structural, morphology, nutritional profile, and in-vitro antioxidant activity of Labeo bata. All these processing methods reduced the water content and improved the quantity of major nutrients. Foremost changes were obtained in the FT-IR spectra of processed fillets with respect to the intensity and shifting of major bands in specific regions. Amino acids, fatty acid profile and mineral content values were also varied significantly (P<0.05) upon processing. Physico-chemical characteristics including cooking loss, water activity, color, and pH of both raw and cooked Indian mackerel differed significantly (P<0.05). In-vitro antioxidant activity was analyzed using the QUENCHER procedure. The DPPH and ABTS scavenging capacity of cooked fillets ranged from 14.8 to 28.0 and from 19.3 to 34.5 mmol Trolox Eq./kg.fish dry basis, respectively.

Keywords

Main Subjects

© 2024, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Aaslyng, M. D., Bejerholm, C., Ertbjerg, P., Bertram, H. C., & Andersen, H. J. (2003). Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Quality and Preference, 14(4), 277-288. https://doi.org/10.1016/S0950-3293(02)00086-1
AOAC. (1996). Official Methods of Analysis, 16th Edition. In: Association of Official Analytical Chemist, Washington DC.
AOAC. (2002). Official methods of analysis, 17th Edition. In: Association of Official Analytical Chemists, Washington DC.
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
Bertram, H. C., Kohler, A., Böcker, U., Ofstad, R., & Andersen, H. J. (2006). Heat-Induced Changes in Myofibrillar Protein Structures and Myowater of Two Pork Qualities. A Combined FT-IR Spectroscopy and Low-Field NMR Relaxometry Study. Journal of Agricultural and Food Chemistry, 54(5), 1740-1746. https://doi.org/10.1021/jf0514726
Burger, I. H., & Walters, C. L. (1973). The effect of processing on the nutritive value of flesh foods. Proc Nutr Soc, 32(1), 1-8. https://doi.org/10.1079/pns19730002
Chiavaro, E., Rinaldi, M., Vittadini, E., & Barbanti, D. (2009). Cooking of pork Longissimus dorsi at different temperature and relative humidity values: Effects on selected physico-chemical properties. Journal of Food Engineering, 93(2), 158-165. https://doi.org/10.1016/j.jfoodeng.2009.01.010
Domínguez, R., Gómez, M., Fonseca, S., & Lorenzo, J. M. (2014). Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat. Meat Science, 97(2), 223-230. https://doi.org/10.1016/j.meatsci.2014.01.023
Ersoy, B., & Özeren, A. (2009). The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chemistry, 115(2), 419-422. https://doi.org/10.1016/j.foodchem.2008.12.018
Fallah, A. A., Siavash Saei-Dehkordi, S., & Nematollahi, A. (2011). Comparative assessment of proximate composition, physicochemical parameters, fatty acid profile and mineral content in farmed and wild rainbow trout (Oncorhynchus mykiss). International Journal of Food Science & Technology, 46(4), 767-773. https://doi.org/10.1111/j.1365-2621.2011.02554.x
García-Segovia, P., Andrés-Bello, A., & Martínez-Monzó, J. (2007). Effect of cooking method on mechanical properties, color and structure of beef muscle (M. pectoralis). Journal of Food Engineering, 80(3), 813-821. https://doi.org/10.1016/j.jfoodeng.2006.07.010
Gladyshev, M. I., Sushchik, N. N., Gubanenko, G. A., Demirchieva, S. M., & Kalachova, G. S. (2006). Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon (Oncorhynchus gorbuscha). Food Chemistry, 96(3), 446-451. https://doi.org/10.1016/j.foodchem.2005.02.034
Gokoglu, N., Yerlikaya, P., & Cengiz, E. (2004). Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chemistry, 84(1), 19-22. https://doi.org/10.1016/S0308-8146(03)00161-4
Gómez, M., Ronda, F., Caballero, P. A., Blanco, C. A., & Rosell, C. M. (2007). Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes. Food Hydrocolloids, 21(2), 167-173. https://doi.org/10.1016/j.foodhyd.2006.03.012
Guillén, M. D., & Cabo, N. (1999). Usefulness of the frequency data of the fourier transform infrared spectra to evaluate the degree of oxidation of edible oils. J Agric Food Chem, 47(2), 709-719. https://doi.org/10.1021/jf9808123
Hakimeh, J., Akram, A., Bahareh, S., & Alireza, S. (2010). Physicochemical and sensory properties of silver carp (Hypophthalmichthys molitrix) fillets as affected by cooking methods. International Food Research Journal, 17(4).
Harris, W. S., Kris-Etherton, P. M., & Harris, K. A. (2008). Intakes of long-chain omega-3 fatty acid associated with reduced risk for death from coronary heart disease in healthy adults. Curr Atheroscler Rep, 10(6), 503-509. https://doi.org/10.1007/s11883-008-0078-z
Hosseini, H., Mahmoudzadeh, M., Rezaei, M., Mahmoudzadeh, L., Khaksar, R., Khosroshahi, N. K., & Babakhani, A. (2014). Effect of different cooking methods on minerals, vitamins and nutritional quality indices of kutum roach (Rutilus frisii kutum). Food Chem, 148, 86-91. https://doi.org/10.1016/j.foodchem.2013.10.012
Hultmann, L., & Rustad, T. (2002). Textural Changes During Iced Storage of Salmon (Salmo salar) and Cod (Gadus morhua). Journal of Aquatic Food Product Technology, 11(3-4), 105-123. https://doi.org/10.1300/J030v11n03_09
Ismail, A., & Hainida Khairul Ikram, E. (2004). Effects of cooking practices (boiling and frying) on the protein and amino acids contents of four selected fishes. Nutrition & Food Science, 34(2), 54-59. https://doi.org/10.1108/00346650410529005
Jayasankar, P., Thomas, P., Paulton, M., & Mathew, J. (2004). Morphometric and genetic analyzes of Indian mackerel (Rastrelliger kanagurta) from peninsular India. Asian Fisheries Science, 17, 201-215. https://doi.org/10.33997/j.afs.2004.17.3.003
Joo, S. T., Kim, G. D., Hwang, Y. H., & Ryu, Y. C. (2013). Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science, 95(4), 828-836. https://doi.org/10.1016/j.meatsci.2013.04.044
Kong, F., Tang, J., Lin, M., & Rasco, B. (2008). Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT - Food Science and Technology, 41(7), 1210-1222. https://doi.org/10.1016/j.lwt.2007.07.020
Kong, F., Tang, J., Rasco, B., Crapo, C., & Smiley, S. (2007). Quality changes of salmon (Oncorhynchus gorbuscha) muscle during thermal processing. J Food Sci, 72(2), S103-111. https://doi.org/10.1111/j.1750-3841.2006.00246.x
Köse, S., Boran, M., & Boran, G. (2006). Storage properties of refrigerated whiting mince after mincing by three different methods. Food Chemistry, 99(1), 129-135. https://doi.org/10.1016/j.foodchem.2005.06.047
Koubaa, A., Mihoubi, N. B., Abdelmouleh, A., & Bouain, A. (2012). Comparison of the effects of four cooking methods on fatty acid profiles and nutritional composition of red mullet (Mullus barbatus) muscle. Food Science and Biotechnology, 21(5), 1243-1250. https://doi.org/10.1007/s10068-012-0163-5
Manthey, M., Karnop, G., & Rehbein, H. (1988). Quality changes of European catfish (Silurus glanis) from warm-water aquaculture during storage on ice. International Journal of Food Science & Technology, 23(1), 1-9. https://doi.org/10.1111/j.1365-2621.1988.tb00543.x
Mohan, M., Ramachandran, D., Sankar, T. V., & Anandan, R. (2008). Physicochemical characterization of muscle proteins from different regions of mackerel (Rastrelliger kanagurta). Food Chemistry, 106(2), 451-457. https://doi.org/10.1016/j.foodchem.2007.05.024
Momenzadeh, Z., Khodanazary, A., & Ghanemi, K. (2017). Effect of different cooking methods on vitamins, minerals and nutritional quality indices of orange-spotted grouper (Epinephelus coioides). Journal of Food Measurement and Characterization, 11(2), 434-441. https://doi.org/10.1007/s11694-016-9411-3
Najafian, L., & Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33(1), 178-185. https://doi.org/10.1016/j.peptides.2011.11.013
Najafian, L., & Babji, A. S. (2018). Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). Journal of Food Measurement and Characterization, 12(3), 2174-2183. https://doi.org/10.1007/s11694-018-9833-1
Ofstad, R., Kidman, S., & Hermansson, A.-M. (1996). Ultramicroscopical Structures and Liquid Loss in Heated Cod ( Gadus morhuaL) and Salmon ( Salmo salar) Muscle. Journal of the Science of Food and Agriculture, 72(3), 337-347. https://doi.org/10.1002/(SICI)1097-0010(199611)72:3<337::AID-JSFA661>3.0.CO;2-6
Oluwaniyi, O. O., Dosumu, O. O., & Awolola, G. V. (2010). Effect of local processing methods (boiling, frying and roasting) on the amino acid composition of four marine fishes commonly consumed in Nigeria. Food Chemistry, 123(4), 1000-1006. https://doi.org/10.1016/j.foodchem.2010.05.051
Orak, H. H., & Kayisoglu, S. (2008). Quality changes in whole, gutted and filleted three fish species (Gadus euxinus, Mugil cephalus, Engraulis encrasicholus) at frozen storage period (-26° C). Acta Sci. Pol. Technol. Aliment, 7(3), 15-28. https://www.food.actapol.net/volume7/issue3/2_3_2008.pdf
Osibona, A., Kusemiju, K., & Akande, G. (2009). Fatty acid composition and amino acid profile of two freshwater species, African catfish (Clarias gariepinus) and tilapia (Tilapia zillii). African Journal of Food, Agriculture, Nutrition and Development, 9(1), 608-621. https://doi.org/10.4314/ajfand.v9i1.19216
Primo-Martín, C., Sanz, T., Steringa, D. W., Salvador, A., Fiszman, S. M., & van Vliet, T. (2010). Performance of cellulose derivatives in deep-fried battered snacks: Oil barrier and crispy properties. Food Hydrocolloids, 24(8), 702-708. https://doi.org/10.1016/j.foodhyd.2010.04.013
Rathod, N., & Pagarkar, A. (2013). Biochemical and sensory quality changes of fish cutlets, made from pangasius fish (Pangasianodon hypophthalmus), during storage in refrigerated display unit at-15 to-18 C. Int. J. Food Agric. Vet. Sci, 3(1), 1-8.
Rosa, R., Bandarra, N. M., & Nunes, M. L. (2007). Nutritional quality of African catfish Clarias gariepinus (Burchell 1822): a positive criterion for the future development of the European production of Siluroidei. International Journal of Food Science & Technology, 42(3), 342-351. https://doi.org/10.1111/j.1365-2621.2006.01256.x
Saguy, I. S., & Dana, D. (2003). Integrated approach to deep fat frying: engineering, nutrition, health and consumer aspects. Journal of Food Engineering, 56(2), 143-152. https://doi.org/10.1016/S0260-8774(02)00243-1
Sahena, F., Zaidul, I. S. M., Jinap, S., Yazid, A. M., Khatib, A., & Norulaini, N. A. N. (2010). Fatty acid compositions of fish oil extracted from different parts of Indian mackerel (Rastrelliger kanagurta) using various techniques of supercritical CO2 extraction. Food Chemistry, 120(3), 879-885. https://doi.org/10.1016/j.foodchem.2009.10.055
Serpen, A., Gökmen, V., & Fogliano, V. (2012). Solvent effects on total antioxidant capacity of foods measured by direct QUENCHER procedure. Journal of Food Composition and Analysis, 26(1), 52-57. https://doi.org/10.1016/j.jfca.2012.02.005
Sivadas, M., Sathakkathullah, S. M., Kumar, K. S., & Kannan, K. (2016). Assessment of impact of fishing on Indian mackerel Rastrelliger kanagurta (Cuvier, 1816) in Tuticorin, south-east coast of India. Indian Journal of Fisheries, 63(3). https://doi.org/10.21077/ijf.2016.63.3.58881-04
Suriya, M., Rajput, R., Reddy, C. K., Haripriya, S., & Bashir, M. (2017). Functional and physicochemical characteristics of cookies prepared from Amorphophallus paeoniifolius flour. J Food Sci Technol, 54(7), 2156-2165. https://doi.org/10.1007/s13197-017-2656-y
Tang, S., Sheehan, D., Buckley, D. J., Morrissey, P. A., & Kerry, J. P. (2001). Anti-oxidant activity of added tea catechins on lipid oxidation of raw minced red meat, poultry and fish muscle. International Journal of Food Science & Technology, 36(6), 685-692. https://doi.org/10.1046/j.1365-2621.2001.00497.x
Weber, J., Bochi, V. C., Ribeiro, C. P., Victório, A. d. M., & Emanuelli, T. (2008). Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chemistry, 106(1), 140-146. https://doi.org/10.1016/j.foodchem.2007.05.052
Wu, H.-C., Chen, H.-M., & Shiau, C.-Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9), 949-957. https://doi.org/10.1016/S0963-9969(03)00104-2 
CAPTCHA Image
Volume 13, Issue 1
March 2024
Pages 27-36
  • Receive Date: 02 August 2022
  • Revise Date: 27 December 2022
  • Accept Date: 31 January 2023