تأثیر پیش‌تیمار فراصوت بر زمان هیدرولیز پروتئین قارچ خوراکی دکمه‌‌ای توسط آنزیم پانکراتین جهت تولید پپتیدهای آنتی‌اکسیدانی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

فراصوت به‌عنوان یک فناوری ارزان، می‌تواند پیش‌تیمار جهت کوتاه‌کردن زمان در هیدرولیز پروتئین‌ها مورد استفاده قرار گیرد. هدف از این پژوهش بررسی اثر زمان هیدرولیز و پیش‌تیمار فراصوت بر هیدرولیز آنزیمی پروتئین قارچ دکمه‌ای به‌وسیلۀ آنزیم پانکراتین جهت تولید هیدرولیزهای با قابلیت آنتی‌اکسیدانی بالا بود. جهت انجام پژوهش ابتدا قارچ دکمه‌ای به پودر تبدیل و سپس عمل هیدرولیز در زمان‌های 30 تا 210 دقیقه با نسبت آنزیم به سوبسترای 1 درصد و در دمای 40 درجۀ سانتی‌گراد در سه وضعیت بدون پیش‌تیمار و با پیش‌تیمار فراصوت با توان 40 و 80 درصد صورت گرفت. افزایش توان تیمار فراصوت باعث افزایش قابلیت مهار رادیکال‌ آزاد 2و2-دی‌فنیل-1-پیکریل‌هیدرازیل و ظرفیت آنتی‌اکسیدانی کل در زمان‌های هیدرولیز کوتاه‌تر گردید. بالاترین میزان مهار رادیکال آزاد DPPH در نمونه‌های تیمارنشده و تیمارشده توسط فراصوت با توان 40 و 80 درصد به‌ترتیب 39/96، 42/91 و 47/76 درصد مشاهده شد. بالاترین ظرفیت آنتی‌اکسیدانی کل در نمونه‌های تیمارنشده و تیمارشده توسط فراصوت با توان 40 و 80 به‌ترتیب 1/64، 1/73 و 1/98 (جذب در 695 نانومتر) بود. همچنین بالاترین میزان قدرت احیاکنندگی یون آهن در نمونه‌های تیمارنشده و تیمارشده توسط فراصوت 40 و 80 درصد به‌ترتیب 2/61، 2/84 و 2/9 (جذب در 700 نانومتر) مشاهده شد. این نتایج نشان داد که نمونه‌های پیش‌تیمارشده با فراصوت با توان 80 درصد نسبت به نمونه‌های بدون پیش‌تیمار و پیش‌تیمارشده با فراصوت با توان 40 درصد بالاترین خاصیت آنتی‌اکسیدانی را دارا می‌باشند. بنابراین استفاده از پیش‌تیمار فراصوت با توان بالا موجب کوتاه‌نمودن زمان هیدرولیز جهت دستیابی به پپتیدهای با قابلیت آنتی‌اکسیدانی بالاتر و افزایش کارایی هیدرولیز می‌گردد.

کلیدواژه‌ها

موضوعات

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Aderinola, T. A., Fagbemi, T. N., Enujiugha, V. N., Alashi, A. M., & Aluko, R. E. (2019). In vitro antihypertensive and antioxidative properties of alcalase-derived Moringa oleifera seed globulin hydrolysate and its membrane fractions. Journal of Food Processing and Preservation, 43(2), e13862. https://doi.org/10.1111/jfpp.13862
AOAC. (1970). Official methods of analysis of the Association of Official Analytical Chemists. https://search.library.wisc.edu/catalog/999488096402121
Arabshahi-Delouee, S., & Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry, 102(4), 1233-1240. https://doi.org/10.1016/j.foodchem.2006.07.013
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114(4), 1198-1205. https://doi.org/10.1016/j.foodchem.2008.10.075
Chandrapala, J., Oliver, C., Kentish, S., & Ashokkumar, M. (2012). Ultrasonics in food processing – Food quality assurance and food safety. Trends in Food Science & Technology, 26(2), 88-98. https://doi.org/10.1016/j.tifs.2012.01.010
Chen, L., Chen, J., Ren, J., & Zhao, M. (2011). Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. J Agric Food Chem, 59(6), 2600-2609. https://doi.org/10.1021/jf103771x
Chi, C.-F., Hu, F.-Y., Wang, B., Li, T., & Ding, G.-F. (2015). Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods, 15, 301-313. https://doi.org/10.1016/j.jff.2015.03.045
Ding, Q., Zhang, T., Niu, S., Cao, F., Wu-Chen, R. A., Luo, L., & Ma, H. (2018). Impact of ultrasound pretreatment on hydrolysate and digestion products of grape seed protein. Ultrasonics Sonochemistry, 42, 704-713. https://doi.org/10.1016/j.ultsonch.2017.11.027
Fiaschi, T., & Chiarugi, P. (2012). Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol, 2012, 762825. https://doi.org/10.1155/2012/762825
FitzGerald, R. J., & Meisel, H. (2000). Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br J Nutr, 84 Suppl 1, S33-37. https://doi.org/10.1017/s0007114500002221
Guerra-Almonacid, C. M., Torruco-Uco, J. G., Jonh Jairo Méndez-Arteaga, W. M.-A., & Rodríguez-Miranda, J. (2019). Effect of ultrasound pretreatment on the antioxidant capacity and antihypertensive activity of bioactive peptides obtained from the protein hydrolysates of Erythrina edulis. Emirates Journal of Food and Agriculture, 31(4), 288-296. https://doi.org/10.9755/ejfa.2019.v31.i4.1938
He, J. Z., Ru, Q. M., Dong, D. D., & Sun, P. L. (2012). Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules, 17(4), 4373-4387. https://doi.org/10.3390/molecules17044373
Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., & Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121(1), 178-184. https://doi.org/10.1016/j.foodchem.2009.12.027
Janakat, S., Al-Fakhiri, S., & Sallal, A. K. (2004). A promising peptide antibiotic from Terfezia claveryi aqueous extract against Staphylococcus aureus in vitro. Phytother Res, 18(10), 810-813. https://doi.org/10.1002/ptr.1563
Je, J.-Y., Lee, K.-H., Lee, M. H., & Ahn, C.-B. (2009). Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42(9), 1266-1272. https://doi.org/10.1016/j.foodres.2009.06.013
Jia, J., Ma, H., Zhao, W., Wang, Z., Tian, W., Luo, L., & He, R. (2010). The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry, 119(1), 336-342. https://doi.org/10.1016/j.foodchem.2009.06.036
Kadam, S. U., Tiwari, B. K., Álvarez, C., & O'Donnell, C. P. (2015). Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends in Food Science & Technology, 46(1), 60-67. https://doi.org/10.1016/j.tifs.2015.07.012
Lavi, I., Nimri, L., Levinson, D., Peri, I., Hadar, Y., & Schwartz, B. (2012). Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. J Gastroenterol, 47(5), 504-518. https://doi.org/10.1007/s00535-011-0514-7
Li, X., Da, S., Li, C., Xue, F., & Zang, T. (2018). Effects of high-intensity ultrasound pretreatment with different levels of power output on the antioxidant properties of alcalase hydrolyzates from Quinoa (Chenopodium quinoa Willd.) protein isolate. Cereal Chemistry, 95(4), 518-526. https://doi.org/10.1002/cche.10055
Li, X. R., Chi, C. F., Li, L., & Wang, B. (2017). Purification and Identification of Antioxidant Peptides from Protein Hydrolysate of Scalloped Hammerhead (Sphyrna lewini) Cartilage. Mar Drugs, 15(3). https://doi.org/10.3390/md15030061
Liang, Q., Ren, X., Ma, H., Li, S., Xu, K., & Oladejo, A. O. (2017). Effect of Low-Frequency Ultrasonic-Assisted Enzymolysis on the Physicochemical and Antioxidant Properties of Corn Protein Hydrolysates. Journal of Food Quality, 2017, 2784146. https://doi.org/10.1155/2017/2784146
Matmaroh, K., Benjakul, S., Prodpran, T., Encarnacion, A. B., & Kishimura, H. (2011). Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chemistry, 129(3), 1179-1186. https://doi.org/10.1016/j.foodchem.2011.05.099
Meshginfar, N., Sadeghi, M. A., Ziaiifar, A. M., Ghorbani, M., & Kashaninejad, M. (2014). Optimization of the production of protein hydrolysates from meat industry by products by response surface methodology. Journal of Food Research, 24(2), 215-225. https://foodresearch.tabrizu.ac.ir/article_1815_58050bcdf8482dba877ad2986115e9b3.pdf
Mine, Y., Li-Chan, E., & Jiang, B. (2010). Bioactive proteins and peptides as functional foods and nutraceuticals (Vol. 29). John Wiley & Sons.
Nadeem, M., Ubaid, N., Qureshi, T. M., Munir, M., & Mehmood, A. (2018). Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrasonics Sonochemistry, 45, 1-6. https://doi.org/10.1016/j.ultsonch.2018.02.034
Oboh, G., & Shodehinde, S. (2009). Distribution of nutrients, polyphenols and antioxidant activities in the pilei and stipes of some commonly consumed edible mushrooms in Nigeria. Bulletin of the Chemical Society of Ethiopia, 23(3).
Paisansak, S., Sangtanoo, P., Srimongkol, P., Saisavoey, T., Reamtong, O., Choowongkomon, K., & Karnchanatat, A. (2021). Angiotensin-I converting enzyme inhibitory peptide derived from the shiitake mushroom (Lentinula edodes). J Food Sci Technol, 58(1), 85-97. https://doi.org/10.1007/s13197-020-04517-z
Pan, A. D., Zeng, H. Y., Alain, G. B., & Feng, B. (2016). Heat-pretreatment and enzymolysis behavior of the lotus seed protein. Food Chem, 201, 230-236. https://doi.org/10.1016/j.foodchem.2016.01.069
Pan, X., Zhao, Y.-Q., Hu, F.-Y., & Wang, B. (2016). Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods, 25, 220-230. https://doi.org/10.1016/j.jff.2016.06.008
Parhizkari, K., Hosseini, E., & Sharifi, A. (2019). Investigation of Properties of Bioactive Peptides Derived from Enzymatic Hydrolysis of Chicken Slaughter Waste. Iranian Journal of Biosystems Engineering, 49(4), 589-596. https://doi.org/10.22059/ijbse.2018.243764.664999
Piri, S., sadeghimahoonak, a., ghorbani, m., & Alami, M. (2015). Production and study on antioxidant activity of protein hydrolysate from whey protein. Research and Innovation in Food Science and Technology, 4(3), 271-282. https://doi.org/10.22101/jrifst.2015.11.22.437
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019
Qu, W., Ma, H., Liu, B., He, R., Pan, Z., & Abano, E. E. (2013). Enzymolysis reaction kinetics and thermodynamics of defatted wheat germ protein with ultrasonic pretreatment. Ultrasonics Sonochemistry, 20(6), 1408-1413. https://doi.org/10.1016/j.ultsonch.2013.04.012
Ren, X., Ma, H., Mao, S., & Zhou, H. (2014). Effects of sweeping frequency ultrasound treatment on enzymatic preparations of ACE-inhibitory peptides from zein. European Food Research and Technology, 238(3), 435-442. https://doi.org/10.1007/s00217-013-2118-3
Téllez-Morales, J. A., Hernández-Santo, B., & Rodríguez-Miranda, J. (2020). Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrasonics Sonochemistry, 61, 104787. https://doi.org/10.1016/j.ultsonch.2019.104787
Wali, A., Ma, H., Shahnawaz, M., Hayat, K., Xiaong, J., & Jing, L. (2017). Impact of Power Ultrasound on Antihypertensive Activity, Functional Properties, and Thermal Stability of Rapeseed Protein Hydrolysates. Journal of Chemistry, 2017, 4373859. https://doi.org/10.1155/2017/4373859
Walters, M. E. (2019). Effects of Ultrasonication on the Antioxidant and Anti-diabetic Properties of Hydrolyzed Oat Proteins  [Thesis]. Carleton University. https:/repository.library.carleton.ca/files/cr56n209d
Wang, B., Atungulu, G. G., Khir, R., Geng, J., Ma, H., Li, Y., & Wu, B. (2015). Ultrasonic Treatment Effect on Enzymolysis Kinetics and Activities of ACE-Inhibitory Peptides from Oat-Isolated Protein. Food Biophysics, 10(3), 244-252. https://doi.org/10.1007/s11483-014-9375-y
Wang, B., Meng, T., Ma, H., Zhang, Y., Li, Y., Jin, J., & Ye, X. (2016). Mechanism study of dual-frequency ultrasound assisted enzymolysis on rapeseed protein by immobilized Alcalase. Ultrasonics Sonochemistry, 32, 307-313. https://doi.org/10.1016/j.ultsonch.2016.03.023
Wang, Z., Liu, X., Xie, H., Liu, Z., Rakariyatham, K., Yu, C., . . . Zhou, D. (2021). Antioxidant activity and functional properties of Alcalase-hydrolyzed scallop protein hydrolysate and its role in the inhibition of cytotoxicity in vitro. Food Chemistry, 344, 128566. https://doi.org/10.1016/j.foodchem.2020.128566
Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., . . . Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics Sonochemistry, 48, 538-549. https://doi.org/10.1016/j.ultsonch.2018.07.018
Yang, X., Li, Y., Li, S., Oladejo, A. O., Wang, Y., Huang, S., . . . Ye, X. (2017). Effects of multi-frequency ultrasound pretreatment under low power density on the enzymolysis and the structure characterization of defatted wheat germ protein. Ultrasonics Sonochemistry, 38, 410-420. https://doi.org/10.1016/j.ultsonch.2017.03.001
Yildirim, A., Mavi, A., Oktay, M., Kara, A. A., Algur, O. F., & Bilaloglu, V. (2000). Comparison of antioxidant and antimicrobial activities of tilia (Tilia argentea Desf ex DC), sage (Salvia triloba l.), and black tea (Camellia sinensis) extracts. J Agric Food Chem, 48(10), 5030-5034. https://doi.org/10.1021/jf000590k
You, L., Zhao, M., Cui, C., Zhao, H., & Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science & Emerging Technologies, 10(2), 235-240. https://doi.org/10.1016/j.ifset.2008.08.007
Yu, L., Sun, J., Liu, S., Bi, J., Zhang, C., & Yang, Q. (2012). Ultrasonic-assisted enzymolysis to improve the antioxidant activities of peanut (Arachin conarachin L.) antioxidant hydrolysate. Int J Mol Sci, 13(7), 9051-9068. https://doi.org/10.3390/ijms13079051
Zhang, Y., Ma, L., Cai, L., Liu, Y., & Li, J. (2017). Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme (ACE) inhibitory peptides from native collagenous materials. Ultrasonics Sonochemistry, 36, 88-94. https://doi.org/10.1016/j.ultsonch.2016.11.008
Zhou, C., Hu, J., Yu, X., Yagoub, A. E. A., Zhang, Y., Ma, H., . . . Otu, P. N. Y. (2017). Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: Hydrolysis kinetics and protein structure. LWT, 77, 488-496. https://doi.org/10.1016/j.lwt.2016.06.048
Zhu, K.-X., Su, C.-Y., Guo, X.-N., Peng, W., & Zhou, H.-M. (2011). Influence of ultrasound during wheat gluten hydrolysis on the antioxidant activities of the resulting hydrolysate. International Journal of Food Science & Technology, 46(5), 1053-1059. https://doi.org/10.1111/j.1365-2621.2011.02585.x
Zhu, L., Chen, J., Tang, X., & Xiong, Y. L. (2008). Reducing, Radical Scavenging, and Chelation Properties of in Vitro Digests of Alcalase-Treated Zein Hydrolysate. Journal of Agricultural and Food Chemistry, 56(8), 2714-2721. https://doi.org/10.1021/jf703697e
Zou, Y., Wang, W., Li, Q., Chen, Y., Zheng, D., Zou, Y., . . . Yang, L. (2016). Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochemistry, 51(3), 431-443. https://doi.org/10.1016/j.procbio.2015.12.011
Zou, Y., Yang, H., Li, P. P., Zhang, M. H., Zhang, X. X., Xu, W. M., & Wang, D. Y. (2019). Effect of different time of ultrasound treatment on physicochemical, thermal, and antioxidant properties of chicken plasma protein. Poultry Science, 98(4), 1925-1933. https://doi.org/10.3382/ps/pey502
CAPTCHA Image
دوره 12، شماره 2
شهریور 1402
صفحه 191-204
  • تاریخ دریافت: 21 خرداد 1401
  • تاریخ بازنگری: 22 دی 1401
  • تاریخ پذیرش: 01 بهمن 1401