تأثیر پیش‌تیمار فراصوت-خلأ بر سینتیک خشک‌کردن و ویژگی‌های فیزیکی فلفل‌سبز تند

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

چکیده

فلفل‌سبز تند (Capsicum annuum) به‌عنوان ادویه‌ای پُرمصرف، به‌دلیل محتوای رطوبت زیاد بسیار فسادپذیر می‌باشد. لذا خشک‌کردن آن به جهت کاهش حجم، هزینۀ حمل‌ونقل و ماندگاری طولانی اهمیت دارد. بدین‌منظور در این تحقیق از حمام فراصوت و حمام آب گرم (50 و 70 درجۀ سانتی‌گراد) در شرایط تحت‌خلأ تا رسیدن به رطوبت 50 درصد به‌عنوان پیش‌تیمار استفاده شد. سپس نمونه‌ها با استفاده از مایکروویو (360 وات) تا رسیدن به رطوبت نهایی 10 درصد خشک شدند. ضریب انتشار رطوبت برش‌های فلفل‌سبز تند با حل تحلیلی قانون دوم فیک محاسبه شد. اعمال پیش‌تیمار فراصوت-خلأ آن باعث کوتاه‌ترشدن معنی‌دار زمان خشک‌شدن و افزایش ضریب انتشار و سرعت خشک‌شدن نمونه در مایکروویو نسبت به سایر نمونه‌ها شد (0/05>P). پیش‌تیمار فراصوت به‌طور معنی‌داری باعث کاهش تغییرات در درصد تغییر اندازه و اندیس قهوه‌ای‌شدن و افزایش نسبت آب‌گیری مجدد نمونه شد (0/05>P). به‌طورکلی استفاده از فراصوت به‌عنوان پیش‌تیمار به خشک‌کردن فلفل‌سبز در شرایط مایکروویو کمک می‌کند و باعث افزایش سرعت خشک‌کردن و حفظ بهتر ویژگی‌های فیزیکی محصول می‌شود. درنهایت استفاده از فراصوت می‌تواند چشم‌اندازی برای تولید محصولی با کیفیت بهتر و ویژگی‌های ظاهری و بازارپسندی بیشتر باشد.

کلیدواژه‌ها

موضوعات

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Başlar, M., Kılıçlı, M., Toker, O. S., Sağdıç, O., & Arici, M. (2014). Ultrasonic vacuum drying technique as a novel process for shortening the drying period for beef and chicken meats. Innovative Food Science & Emerging Technologies, 26, 182-190. https://doi.org/10.1016/j.ifset.2014.06.008
Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics sonochemistry, 70, 105293. https://doi.org/10.1016/j.ultsonch.2020.105293
Bisht, A., Kaur, A., Singh, P., Pranshu, & Alam, F. (2022). A study on the dehydration of vegetables using novel drying techniques. The Pharma Innovation Journal, SP-11(1), 978-989. https://www.thepharmajournal.com/archives/2022/vol11issue1S/PartO/S-11-1-161-142.pdf
Brines, C., Mulet, A., García-Pérez, J. V., Riera, E., & Cárcel, J. A. (2015). Influence of the Ultrasonic Power Applied on Freeze Drying Kinetics. Physics Procedia, 70, 850-853. https://doi.org/10.1016/j.phpro.2015.08.174
Chen, Z.-G., Guo, X.-Y., & Wu, T. (2016). A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics sonochemistry, 30, 28-34. https://doi.org/10.1016/j.ultsonch.2015.11.026
de la Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523-e527. https://doi.org/10.1016/j.ultras.2006.05.181
Dehghannya, J., Hosseinlar, S.-H., & Heshmati, M. K. (2018). Multi-stage continuous and intermittent microwave drying of quince fruit coupled with osmotic dehydration and low temperature hot air drying. Innovative Food Science & Emerging Technologies, 45, 132-151. https://doi.org/10.1016/j.ifset.2017.10.007
Dı́az, G. R. z., Martı́nez-Monzó, J., Fito, P., & Chiralt, A. (2003). Modelling of dehydration-rehydration of orange slices in combined microwave/air drying. Innovative Food Science & Emerging Technologies, 4(2), 203-209. https://doi.org/10.1016/S1466-8564(03)00016-X
Feng, H. (2002). Analysis of microwave assisted fluidized-bed drying of particulate product with a simplified heat and mass transfer model. International Communications in Heat and Mass Transfer, 29(8), 1021-1028. https://doi.org/10.1016/S0735-1933(02)00430-X
Guclu, G., Keser, D., Kelebek, H., Keskin, M., Emre Sekerli, Y., Soysal, Y., & Selli, S. (2021). Impact of production and drying methods on the volatile and phenolic characteristics of fresh and powdered sweet red peppers. Food Chemistry, 338, 128129. https://doi.org/10.1016/j.foodchem.2020.128129
Hernández-Pérez, T., Gómez-García, M. D. R., Valverde, M. E., & Paredes-López, O. (2020). Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr Rev Food Sci Food Saf, 19(6), 2972-2993. https://doi.org/10.1111/1541-4337.12634
Huang, D., Men, K., Li, D., Wen, T., Gong, Z., Sunden, B., & Wu, Z. (2020). Application of ultrasound technology in the drying of food products. Ultrasonics sonochemistry, 63, 104950. https://doi.org/10.1016/j.ultsonch.2019.104950
Kowalski, S. J., Mierzwa, D., & Stasiak, M. (2017). Ultrasound-assisted convective drying of apples at different process conditions. Drying Technology, 35(8), 939-947. https://doi.org/10.1080/07373937.2016.1239631
Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4), 153-163. https://doi.org/10.1016/j.tifs.2005.10.012
Marques, L. G., Prado, M. M., & Freire, J. T. (2009). Rehydration characteristics of freeze-dried tropical fruits. LWT - Food Science and Technology, 42(7), 1232-1237. https://doi.org/10.1016/j.lwt.2009.02.012
Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 61(3), 373-386. https://doi.org/10.1016/S0260-8774(03)00144-4
Nourani, M., Hamdami, N., Keramat, J., Moheb, A., & Shahedi, M. (2016). Preparation of a stable nanocomposite phase change material (NCPCM) using sodium stearoyl lactylate (SSL) as the surfactant and evaluation of its stability using image analysis. Renewable Energy, 93, 404-411. https://doi.org/10.1016/j.renene.2016.02.073
Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433. https://doi.org/10.1016/j.jfoodeng.2012.06.013
Orsat, V., Raghavan, G. S. V., & Krishnaswamy, K. (2017). 5 - Microwave technology for food processing: An overview of current and future applications. In M. Regier, K. Knoerzer, & H. Schubert (Eds.), The Microwave Processing of Foods (Second Edition) (pp. 100-116). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100528-6.00005-X
Ozkan, I. A., Akbudak, B., & Akbudak, N. (2007). Microwave drying characteristics of spinach. Journal of Food Engineering, 78(2), 577-583. https://doi.org/10.1016/j.jfoodeng.2005.10.026
Papageorge, L. M., McFeeters, R. F., & Fleming, H. P. (2003). Factors Influencing Texture Retention of Salt-free, Acidified, Red Bell Peppers during Storage. Journal of Agricultural and Food Chemistry, 51(5), 1460-1463. https://doi.org/10.1021/jf025788e
Paran, I., & van der Knaap, E. (2007). Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany, 58(14), 3841-3852. https://doi.org/10.1093/jxb/erm257
Prosapio, V., & Norton, I. (2018). Simultaneous application of ultrasounds and firming agents to improve the quality properties of osmotic + freeze-dried foods. Lwt, 96, 402-410. https://doi.org/10.1016/j.lwt.2018.05.068
Ratti, C. (1994). Shrinkage during drying of foodstuffs. Journal of Food Engineering, 23(1), 91-105. https://doi.org/10.1016/0260-8774(94)90125-2
Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. https://doi.org/10.1016/j.jfoodeng.2014.01.001
Roshanak, S., Rahimmalek, M., & Goli, S. A. (2016). Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J Food Sci Technol, 53(1), 721-729. https://doi.org/10.1007/s13197-015-2030-x
Senadeera, W., Bhandari, B. R., Young, G., & Wijesinghe, B. (2000). Chapter 6- Physical property changes of fruits and vegetables during hot air drying. In A. S. Mujumdar (Ed.), Drying technology in agriculture and food sciences (pp. 149-166). Science Publishers, USA.
Sette, P., Salvatori, D., & Schebor, C. (2016). Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air- and freeze-drying. Food and Bioproducts Processing, 100, 156-171. https://doi.org/10.1016/j.fbp.2016.06.018
CAPTCHA Image
دوره 12، شماره 3
آذر 1402
صفحه 305-312
  • تاریخ دریافت: 27 شهریور 1401
  • تاریخ بازنگری: 25 بهمن 1401
  • تاریخ پذیرش: 26 بهمن 1401