بررسی تولید بتا-گلوکان از میسلیوم قارچ صدفی به روش کشت غوطه‌وری و ارزیابی تکنیک‌های استخراج آن

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه زیست‌فناوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

2 گروه فرآوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

چکیده

بتا-گلوکان‏ها از ترکیبات بسیار ارزشمند پلی‌ساکاریدی در ساختار دیوارۀ ‏سلولی برخی گیاهان عالی، قارچ‌ها و باکتری‌ها هستند که از میان آنها قارچ‌‏ها با داشتن انواع ویژه‌ای از بتا-گلوکان‌های زیست‌فعال ‏حائز اهمیت می‌باشند. در تحقیق حاضر، قارچ صدفی به‌عنوان منبع تولید بتا-گلوکان درنظرگرفته شد که ضمن ارزیابی تأثیر روش هم‌زدن طی رشد قارچ، اثر نوع ترکیبات محیط‌کشت شامل 4 قند زایلوز، گلوکز، مالتوز و لاکتوز (در سه سطح) و 4 منبع متفاوت نیتروژن شامل؛ عصارۀ مالت، عصارۀ مخمر، پپتون و عصارۀ سبوس برنج (در یک سطح) بر میزان تولید میسلیوم قارچی بررسی شد. راندمان فرایند با اندازه‌گیری میزان میسلیوم خشک تولیدی در واحد حجم محاسبه شد. نتایج نشان داد هم‌زدن مداوم با سرعت 220 دور در دقیقه سبب افزایش تولید میسلیوم گردید و بیشترین مقادیر بیومس تولیدی در حضور مالتوز به‌عنوان منبع کربوهیدرات و به‌ترتیب عصارۀ مالت و عصارۀ سبوس برنج به‌عنوان منابع نیتروژنی حاصل شد جهت مقایسۀ نتایج از طرح پایۀ کاملاً تصادفی در قالب فاکتوریل استفاده شد. علاوه‌برآن استخراج بتا-گلوکان از میسلیوم قارچی به دو روش اسیدی و اسید-قلیا موردارزیابی قرار گرفت، به‌منظور بررسی نتایج به‌دست‌آمده از روش آنالیز واریانس یک‌طرفه استفاده گردید، به‌طوری‌که استخراج به روش اسید-قلیا با مقدار خلوص حدود 94 درصد به لحاظ آماری تفاوت معنی‌داری در مقایسه با روش اسیدی نشان داد (0/05>P). یافته‌های تحقیق حاضر اهمیت هوادهی، نوع منابع قندی و نیتروژنی مورد استفاده و روش استخراج را در دستیابی به مقادیر اقتصادی از بتا-گلوکان نشان داد. استفاده از حلال‌ها در دو pH اسیدی و بازی می‌تواند بتا-گلوکانی با خلوص بالا در جهت استفاده در فراورده‌های دارویی را حاصل نماید.

کلیدواژه‌ها

موضوعات

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Dilshad, S. M. R. (2012). Beta glucan: a valuable functional ingredient in foods. Critical reviews in food science and nutrition, 52(3), 201-212.
Alsohaili, S. A., & Bani-Hasan, B. M. (2018). Morphological and molecular identification of fungi isolated from different environmental sources in the Northern Eastern desert of Jordan. Jordan Journal of Biological Sciences, 11(3)
Arabamerian, F., Elhamirad, A. H., Qodsevali, A. R., & Armin, M. (2013). Evaluation of the effect of malting process on the physicochemical properties of two varieties of barley in Golestan province. Journal of Innovation in Food Science and Technology, 4(13), 83-80.
Atli, B., Yamac, M., & Yildiz, Z. (2013). Optimization of submerged fermentation conditions for lovastatin production by the culinary-medicinal oyster mushroom, Pleurotus ostreatus (Higher Basidiomycetes). International Journal of Medicinal Mushrooms, 15(5), 487-495. https://doi.org/10.1615/intjmedmushr.v15.i5.60
Bae, S.-H., Kim, B.-R., Kang, B. J., Tsutsui, N., Okutsu, T., Shinji, J., . . . Wilder, M. N. (2012). Molecular cloning of prophenoloxidase and the effects of dietary β-glucan and rutin on immune response in hemocytes of the fleshy shrimp, Fenneropenaeus chinensis. Fish & Shellfish Immunology, 33(3), 597-604. https://doi.org/10.1016/j.fsi.2012.06.034
Bak, W. C., Park, J. H., Park, Y. A., & Ka, K. H. (2014). Determination of glucan contents in the fruiting bodies and mycelia of Lentinula edodes cultivars. Mycobiology, 42(3), 301-304. https://doi.org/10.5941%2FMYCO.2014.42.3.301
Bernardi, E., Minotto, E., & Nascimento, J. S. d. (2013). Evaluation of growth and production of Pleurotus sp. in sterilized substrates. Arquivos do Instituto Biológico, 80, 318-324.
Bradstreet, R. B. (1954). Kjeldahl method for organic nitrogen. Analytical Chemistry, 26(1), 185-187. https://doi.org/10.1021/ac60085a028
Brown, G. D., & Gordon, S. (2003). Fungal β-glucans and mammalian immunity. Immunity, 19(3), 311-315. https://doi.org/10.1016/s1074-7613(03)00233-4
Burus, M., Johnson, S. M., Williams, G., & Stackhouse, S. (1994). Human factors evaluation of the Delco RDS radio receiver and the RDS architecture. Retrieved from the University of Minnesota Digital Conservancy. https://hdl.handle.net/11299/156520
Carbonero, E. R., Ruthes, A. C., Freitas, C. S., Utrilla, P., Gálvez, J., da Silva, E. V., . . . Iacomini, M. (2012). Chemical and biological properties of a highly branched β-glucan from edible mushroom Pleurotus sajor-caju. Carbohydrate polymers, 90(2), 814-819. https://doi.org/10.1016/j.carbpol.2012.06.005
Chang, S., & Buswell, J. (2003). Medicinal mushrooms-a prominent source of nutriceuticals for the 21st century. Current Topics in Nutraceutical Research, 1, 257-280.
Chen, J., & Seviour, R. (2007). Medicinal importance of fungal β-(1→ 3),(1→ 6)-glucans. Mycological research, 111(6), 635-652. https://doi.org/10.1016/j.mycres.2007.02.011
Clayton, P. (2013). Beta Glucans–How scientific research brought this traditional nutrient to forefront of nutritional medicine–by. The clinically tesred nutrient, 4, 22-41. https://doi.org/10.1016/j.mycres.2007.02.011
de Vries, R. P., & Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and molecular biology reviews, 65(4), 497-522. https://doi.org/10.1128/mmbr.65.4.497-522.2001
Du, B., Lin, C., Bian, Z., & Xu, B. (2015). An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Science & Technology, 41(1), 49-59. https://doi.org/10.1016/j.tifs.2014.09.002
El Khoury, D., Cuda, C., Luhovyy, B., & Anderson, G. (2012). Beta glucan: health benefits in obesity and metabolic syndrome. Journal of nutrition and metabolism, 2012. https://doi.org/10.1155%2F2012%2F851362
Fang, Q.-H., & Zhong, J.-J. (2002). Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites—ganoderic acid and polysaccharide. Biochemical engineering journal, 10(1), 61-65. https://doi.org/10.1016/S1369-703X(01)00158-9
Freimund, S., Sauter, M., Käppeli, O., & Dutler, H. (2003). A new non-degrading isolation process for 1, 3-β-D-glucan of high purity from baker's yeast Saccharomyces cerevisiae. Carbohydrate polymers, 54(2), 159-171. https://doi.org/10.1016/S0144-8617(03)00162-0
Gregori, A., Švagelj, M., & Pohleven, J. (2007). Cultivation techniques and medicinal properties of Pleurotus spp. Food Technology and Biotechnology, 45(3), 238-249.
Guadarrama-Mendoza, P., Valencia del Toro, G., Ramírez-Carrillo, R., Robles-Martinez, F., Yáñez-Fernández, J., Garín-Aguilar, M., . . . Bravo-Villa, G. (2014). Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region. Brazilian Journal of Microbiology, 45(3), 861-872. https://doi.org/10.1590%2Fs1517-83822014000300016
Havrlentova, M., Petrulakova, Z., Burgarova, A., Gago, F., Hlinkova, A., & Šturdík, E. (2011). β-glucans and their significance for the preparation of functional foods-a review. Czech Journal of Food Sciences, 29(1), 1-14. https://doi.org/10.17221/162/2009-CJFS
Hertzog, C. (2013). Beta Glucan: a 21st Century Miracle? Booksmango.
Hsu, M. J., Lee, S. S., & Lin, W. W. (2002). Polysaccharide purified from Ganoderma lucidum inhibits spontaneous and Fas‐mediated apoptosis in human neutrophils through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. Journal of leukocyte biology, 72(1), 207-216.
Huang, K.-x., Badger, M., Haney, K., & Evans, S. L. (2007). Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens. Protein expression and purification, 53(2), 325-330. https://doi.org/10.1016/j.pep.2007.01.010
Irakli, M., Biliaderis, C. G., Izydorczyk, M. S., & Papadoyannis, I. N. (2004). Isolation, structural features and rheological properties of water‐extractable β‐glucans from different Greek barley cultivars. Journal of the Science of Food and Agriculture, 84(10), 1170-1178. https://doi.org/10.1002/jsfa.1787
Jennison, D., Schultz, P., & Sears, M. (1996). Ab initio calculations of adsorbate hydrogen-bond strength: ammonia on Pt (111). Surface science, 368(1-3), 253-257. https://doi.org/10.1016/S0039-6028(96)01058-8
Jung, O. J., Lee, E. J., Kim, J. W., Chung, Y. R., & Lee, C.-W. (1997). Identification of putative phosphoinositide-specific phospholipase C genes in filamentous fungi. Molecules & Cells (Springer Science & Business Media BV), 7(2).
Kaveh, M., Pahlevanloo, A., & Sarabi-Jamab, M. (2017). Fungies, valuable sources of bioactive β-glucans. Journal of Biosafety, 10(3), 45-65. http://dorl.net/dor/20.1001.1.27170632.1396.10.3.3.6  (in Persian)
Kim, H.-M., Kim, S.-W., Hwang, H.-J., Park, M.-K., Mahmoud, Y. A.-G., Choi, J.-W., & Yun, J.-W. (2006). Influence of agitation intensity and aeration rate on production of antioxidative exopolysaccharides from submerged mycelial culture of Ganoderma resinaceum. Journal of microbiology and biotechnology, 16(8), 1240-1247.
Kim, Y.-T., Kim, E.-H., Cheong, C., Williams, D. L., Kim, C.-W., & Lim, S.-T. (2000). Structural characterization of β-D-(1→ 3, 1→ 6)-linked glucans using NMR spectroscopy. Carbohydrate research, 328(3), 331-341. https://doi.org/10.1016/S0008-6215(00)00105-1
Kogan, G. (2000). (1→ 3, 1→ 6)-β-d-Glucans of yeasts and fungi and their biological activity. Studies in natural products chemistry, 23, 107-152. https://doi.org/10.1016/S1572-5995(00)80128-3
Lee, W. Y., Park, Y., Ahn, J. K., Ka, K. H., & Park, S. Y. (2007). Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme and microbial technology, 40(2), 249-254. https://doi.org/10.1016/j.enzmictec.2006.04.009
Milessi, T. S., Antunes, F. A., Chandel, A. K., & Silva, S. S. (2013). Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate. 3 Biotech, 3(5), 373-379. https://doi.org/10.1007/s13205-012-0098-9
Nitschke, J., Modick, H., Busch, E., von Rekowski, R. W., Altenbach, H. J., & Mölleken, H. (2011). A new colorimetric method to quantify β-1, 3-1, 6-glucans in comparison with total β-1, 3-glucans and a method to quantify chitin in edible mushrooms. Food Chemistry, 127(2), 791-796. https://doi.org/10.1016/j.foodchem.2010.12.149
Noora, H., Shahabi-vand, S., Karimi, F., Aghaee, A., & Darvishi, F. (2018). Optimization of growth and biomass production in the endophytic fungus Piriformospora indica. Journal of Molecular and Cellular Research, 30(3), 441-451. https://dorl.net/dor/20.1001.1.23832738.1396.30.3.9.2 (in Persian)
Nunes, M. D., da Luz, J. M. R., Paes, S. A., Ribeiro, J. J. O., da Silva, M. d. C. S., & Kasuya, M. C. M. (2012). Nitrogen supplementation on the productivity and the chemical composition of oyster mushroom. Journal of Food Research, 1(2), 113. https://doi.org/10.5539/jfr.v1n2p113
Papaspyridi, L.-M., Aligiannis, N., Christakopoulos, P., Skaltsounis, A.-L., & Fokialakis, N. (2011). Production of bioactive metabolites with pharmaceutical and nutraceutical interest by submerged fermentation of Pleurotus ostreatus in a batch stirred tank bioreactor. Procedia Food Science, 1, 1746-1752. https://doi.org/10.1016/j.profoo.2011.09.257
Papaspyridi, L.-M., Katapodis, P., Gonou-Zagou, Z., Kapsanaki-Gotsi, E., & Christakopoulos, P. (2010). Optimization of biomass production with enhanced glucan and dietary fibres content by Pleurotus ostreatus ATHUM 4438 under submerged culture. Biochemical engineering journal, 50(3), 131-138. https://doi.org/10.1016/j.bej.2010.04.008
Park, J., Kim, Y., Kim, S., Hwang, H., Cho, Y., Lee, Y., . . . Yun, J. (2002). Effect of agitation intensity on the exo‐biopolymer production and mycelial morphology in Cordyceps militaris. Letters in Applied Microbiology, 34(6), 433-438. https://doi.org/10.1046/j.1472-765x.2002.01126.x
Petre, M., Teodorescu, A., Tuluca, E., Bejan, C., & Andronescu, A. (2010). Biotechnology of mushroom pellets producing by controlled submerged fermentation. Romanian Biotechnological Letters, 15(2), 50-55.
Robbins, E., & Seeley, R. (1977). Cholesterol lowering effect of dietary yeast and yeast fractions. Journal of Food Science, 42(3), 694-698. https://doi.org/10.1111/j.1365-2621.1977.tb12581.x
Sari, M., Prange, A., Lelley, J. I., & Hambitzer, R. (2017). Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chemistry, 216, 45-51. https://doi.org/10.1016/j.foodchem.2016.08.010
Shah, P., & Modi, H. (2018). Optimization of culture conditions for biomass production of Ganoderma lucidum. International Journal of Current Microbiology and Applied Sciences, 7(2), 1882-1889. https://doi.org/10.20546/ijcmas.2018.702.227
Stone, B., & Clark, A. (1992). Chemistry and Biology of (1→ 3)-β-Glucans. La Trobe University Press.
Synytsya, A., Mickova, K., Jablonsky, I., SLUKOVÁ, M., & Copikova, J. (2008). Mushrooms of genus Pleurotus as a source of dietary fibres and glucans for food supplements. Czech J. Food Sci, 26(6), 441-446. https://doi.org/10.17221/1361-CJFS
Synytsya, A., Míčková, K., Synytsya, A., Jablonský, I., Spěváček, J., Erban, V., . . . Čopíková, J. (2009). Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate polymers, 76(4), 548-556. https://doi.org/10.1016/j.carbpol.2008.11.021
Tang, Y.-J., Zhu, L.-W., Li, H.-M., & Li, D.-S. (2007). Submerged culture of mushrooms in bioreactors–challenges, current state-of-the-art, and future prospects. Food Technology and Biotechnology, 45(3), 221-229.
Tanriverdi, P., Yuksel, B. C., Rasa, K., Guler, G., Iskit, A. B., Guc, M. O., & Korkmaz, A. (2005). The effects of selective nitric oxide synthase blocker on survival, mesenteric blood flow and multiple organ failure induced by zymosan1. Journal of Surgical Research, 124(1), 67-73. https://doi.org/10.1016/j.jss.2004.09.004
Tay, C. C., Liew, H. H., Yin, C.-Y., Abdul-Talib, S., Surif, S., Suhaimi, A. A., & Yong, S. K. (2011). Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean Journal of Chemical Engineering, 28(3), 825-830 https://doi.org/10.1007/s11814-010-0435-9
Thammakiti, S., Suphantharika, M., Phaesuwan, T., & Verduyn, C. (2004). Preparation of spent brewer's yeast β‐glucans for potential applications in the food industry. International journal of food science & technology, 39(1), 21-29. https://doi.org/10.1111/j.1365-2621.2004.00742.x
Vamanu, E. (2012). Biological activities of the polysaccharides produced in submerged culture of two edible Pleurotus ostreatus mushrooms. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/565974
Vetvicka, V., & Vetvickova, J. (2010). β1, 3-Glucan: Silver bullet or hot air? Open Glycoscience, 3, 1-6.
Vetvicka, V., & Vetvickova, J. (2014). Comparison of immunological effects of commercially available β-glucans. Appl Sci Rep, 1(2), 1-7.
Villares, A., Mateo-Vivaracho, L., & Guillamón, E. (2012). Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture, 2(4), 452-471. https://doi.org/10.3390/agriculture2040452
Wang, J., Warris, A., Ellingsen, E., Jørgensen, P., Flo, T., Espevik, T., . . . Aasen, A. (2001). Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infection and immunity, 69(4), 2402-2406. https://doi.org/10.1128%2FIAI.69.4.2402-2406.2001
Wu, T., Zivanovic, S., Draughon, F. A., & Sams, C. E. (2004). Chitin and chitosan value-added products from mushroom waste. Journal of agricultural and food chemistry, 52(26), 7905-7910. https://doi.org/10.1021/jf0492565
Zeković, D. B., Kwiatkowski, S., Vrvić, M. M., Jakovljević, D., & Moran, C. A. (2005). Natural and modified (1→ 3)-β-D-glucans in health promotion and disease alleviation. Critical reviews in biotechnology, 25(4), 205-230. https://doi.org/10.1080/07388550500376166
Zhu, F., Du, B., & Xu, B. (2016). A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids, 52, 275-288. https://doi.org/10.1016/j.foodhyd.2015.07.003
CAPTCHA Image
دوره 12، شماره 2
شهریور 1402
صفحه 231-244
  • تاریخ دریافت: 30 آبان 1401
  • تاریخ بازنگری: 14 اسفند 1401
  • تاریخ پذیرش: 22 اسفند 1401