Production of β-Glucans from Oyster Mushroom Pleurotus ostreatus by Submerged Culture Method and Evaluation of Its Extraction Techniques

Document Type : Original Paper


1 Department of Food Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

2 Department of Food Technology, Research Institute of Food Science and Technology, Mashhad, Iran

3 Department of Food Processing, Research Institute of Food Science and Technology, Mashhad, Iran


The β-Glucans are exceptionally important polysaccharide compounds in the cell wall of a higher plants, fungi and bacteria. Due to having functional types of bioactive β-glucans, fungi are one of the foremost important sources of β-glucans. In the present study, Pleurotus ostreatus was considered as a source of β-glucan production, which can also   evaluate the effect of the stirring method during mass production. Also the effect of the types of 4 carbon sources namely; xylose, glucose, maltose and lactose (at 3 levels) and 4 different sources of nitrogen including; Malt extract, yeast extract, peptone and rice bran extract (at 1 level) were investigated. The efficiency of the process was calculated by measuring the amount of produced dry mycelium per unit volume. According to the results continuous stirring at a speed of 220 rpm per minute increased the mycelium production and the highest amounts of produced biomass were obtained in the presence of maltose as a carbon source and malt extract and rice bran extract as nitrogen sources. β-glucan extraction was also evaluated by acid and acid-alkaline methods  extracted by acid-alkali method showed a statistically significant difference of about 94% compared to β-glucan extraction by acid method (P<0.05). At a glance the importance of aeration, the type of carbon and nitrogen sources used and the extraction method in achieving economic amounts of β-glucan were proved. Also, the use of right solvents in both acidic and basic pH can obtain β-glucans with high purity for use in pharmaceutical products.


Main Subjects

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (

Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Dilshad, S. M. R. (2012). Beta glucan: a valuable functional ingredient in foods. Critical reviews in food science and nutrition, 52(3), 201-212.
Alsohaili, S. A., & Bani-Hasan, B. M. (2018). Morphological and molecular identification of fungi isolated from different environmental sources in the Northern Eastern desert of Jordan. Jordan Journal of Biological Sciences, 11(3)
Arabamerian, F., Elhamirad, A. H., Qodsevali, A. R., & Armin, M. (2013). Evaluation of the effect of malting process on the physicochemical properties of two varieties of barley in Golestan province. Journal of Innovation in Food Science and Technology, 4(13), 83-80.
Atli, B., Yamac, M., & Yildiz, Z. (2013). Optimization of submerged fermentation conditions for lovastatin production by the culinary-medicinal oyster mushroom, Pleurotus ostreatus (Higher Basidiomycetes). International Journal of Medicinal Mushrooms, 15(5), 487-495.
Bae, S.-H., Kim, B.-R., Kang, B. J., Tsutsui, N., Okutsu, T., Shinji, J., . . . Wilder, M. N. (2012). Molecular cloning of prophenoloxidase and the effects of dietary β-glucan and rutin on immune response in hemocytes of the fleshy shrimp, Fenneropenaeus chinensis. Fish & Shellfish Immunology, 33(3), 597-604.
Bak, W. C., Park, J. H., Park, Y. A., & Ka, K. H. (2014). Determination of glucan contents in the fruiting bodies and mycelia of Lentinula edodes cultivars. Mycobiology, 42(3), 301-304.
Bernardi, E., Minotto, E., & Nascimento, J. S. d. (2013). Evaluation of growth and production of Pleurotus sp. in sterilized substrates. Arquivos do Instituto Biológico, 80, 318-324.
Bradstreet, R. B. (1954). Kjeldahl method for organic nitrogen. Analytical Chemistry, 26(1), 185-187.
Brown, G. D., & Gordon, S. (2003). Fungal β-glucans and mammalian immunity. Immunity, 19(3), 311-315.
Burus, M., Johnson, S. M., Williams, G., & Stackhouse, S. (1994). Human factors evaluation of the Delco RDS radio receiver and the RDS architecture. Retrieved from the University of Minnesota Digital Conservancy.
Carbonero, E. R., Ruthes, A. C., Freitas, C. S., Utrilla, P., Gálvez, J., da Silva, E. V., . . . Iacomini, M. (2012). Chemical and biological properties of a highly branched β-glucan from edible mushroom Pleurotus sajor-caju. Carbohydrate polymers, 90(2), 814-819.
Chang, S., & Buswell, J. (2003). Medicinal mushrooms-a prominent source of nutriceuticals for the 21st century. Current Topics in Nutraceutical Research, 1, 257-280.
Chen, J., & Seviour, R. (2007). Medicinal importance of fungal β-(1→ 3),(1→ 6)-glucans. Mycological research, 111(6), 635-652.
Clayton, P. (2013). Beta Glucans–How scientific research brought this traditional nutrient to forefront of nutritional medicine–by. The clinically tesred nutrient, 4, 22-41.
de Vries, R. P., & Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and molecular biology reviews, 65(4), 497-522.
Du, B., Lin, C., Bian, Z., & Xu, B. (2015). An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Science & Technology, 41(1), 49-59.
El Khoury, D., Cuda, C., Luhovyy, B., & Anderson, G. (2012). Beta glucan: health benefits in obesity and metabolic syndrome. Journal of nutrition and metabolism, 2012.
Fang, Q.-H., & Zhong, J.-J. (2002). Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites—ganoderic acid and polysaccharide. Biochemical engineering journal, 10(1), 61-65.
Freimund, S., Sauter, M., Käppeli, O., & Dutler, H. (2003). A new non-degrading isolation process for 1, 3-β-D-glucan of high purity from baker's yeast Saccharomyces cerevisiae. Carbohydrate polymers, 54(2), 159-171.
Gregori, A., Švagelj, M., & Pohleven, J. (2007). Cultivation techniques and medicinal properties of Pleurotus spp. Food Technology and Biotechnology, 45(3), 238-249.
Guadarrama-Mendoza, P., Valencia del Toro, G., Ramírez-Carrillo, R., Robles-Martinez, F., Yáñez-Fernández, J., Garín-Aguilar, M., . . . Bravo-Villa, G. (2014). Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region. Brazilian Journal of Microbiology, 45(3), 861-872.
Havrlentova, M., Petrulakova, Z., Burgarova, A., Gago, F., Hlinkova, A., & Šturdík, E. (2011). β-glucans and their significance for the preparation of functional foods-a review. Czech Journal of Food Sciences, 29(1), 1-14.
Hertzog, C. (2013). Beta Glucan: a 21st Century Miracle? Booksmango.
Hsu, M. J., Lee, S. S., & Lin, W. W. (2002). Polysaccharide purified from Ganoderma lucidum inhibits spontaneous and Fas‐mediated apoptosis in human neutrophils through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. Journal of leukocyte biology, 72(1), 207-216.
Huang, K.-x., Badger, M., Haney, K., & Evans, S. L. (2007). Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens. Protein expression and purification, 53(2), 325-330.
Irakli, M., Biliaderis, C. G., Izydorczyk, M. S., & Papadoyannis, I. N. (2004). Isolation, structural features and rheological properties of water‐extractable β‐glucans from different Greek barley cultivars. Journal of the Science of Food and Agriculture, 84(10), 1170-1178.
Jennison, D., Schultz, P., & Sears, M. (1996). Ab initio calculations of adsorbate hydrogen-bond strength: ammonia on Pt (111). Surface science, 368(1-3), 253-257.
Jung, O. J., Lee, E. J., Kim, J. W., Chung, Y. R., & Lee, C.-W. (1997). Identification of putative phosphoinositide-specific phospholipase C genes in filamentous fungi. Molecules & Cells (Springer Science & Business Media BV), 7(2).
Kaveh, M., Pahlevanloo, A., & Sarabi-Jamab, M. (2017). Fungies, valuable sources of bioactive β-glucans. Journal of Biosafety, 10(3), 45-65.  (in Persian)
Kim, H.-M., Kim, S.-W., Hwang, H.-J., Park, M.-K., Mahmoud, Y. A.-G., Choi, J.-W., & Yun, J.-W. (2006). Influence of agitation intensity and aeration rate on production of antioxidative exopolysaccharides from submerged mycelial culture of Ganoderma resinaceum. Journal of microbiology and biotechnology, 16(8), 1240-1247.
Kim, Y.-T., Kim, E.-H., Cheong, C., Williams, D. L., Kim, C.-W., & Lim, S.-T. (2000). Structural characterization of β-D-(1→ 3, 1→ 6)-linked glucans using NMR spectroscopy. Carbohydrate research, 328(3), 331-341.
Kogan, G. (2000). (1→ 3, 1→ 6)-β-d-Glucans of yeasts and fungi and their biological activity. Studies in natural products chemistry, 23, 107-152.
Lee, W. Y., Park, Y., Ahn, J. K., Ka, K. H., & Park, S. Y. (2007). Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme and microbial technology, 40(2), 249-254.
Milessi, T. S., Antunes, F. A., Chandel, A. K., & Silva, S. S. (2013). Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate. 3 Biotech, 3(5), 373-379.
Nitschke, J., Modick, H., Busch, E., von Rekowski, R. W., Altenbach, H. J., & Mölleken, H. (2011). A new colorimetric method to quantify β-1, 3-1, 6-glucans in comparison with total β-1, 3-glucans and a method to quantify chitin in edible mushrooms. Food Chemistry, 127(2), 791-796.
Noora, H., Shahabi-vand, S., Karimi, F., Aghaee, A., & Darvishi, F. (2018). Optimization of growth and biomass production in the endophytic fungus Piriformospora indica. Journal of Molecular and Cellular Research, 30(3), 441-451. (in Persian)
Nunes, M. D., da Luz, J. M. R., Paes, S. A., Ribeiro, J. J. O., da Silva, M. d. C. S., & Kasuya, M. C. M. (2012). Nitrogen supplementation on the productivity and the chemical composition of oyster mushroom. Journal of Food Research, 1(2), 113.
Papaspyridi, L.-M., Aligiannis, N., Christakopoulos, P., Skaltsounis, A.-L., & Fokialakis, N. (2011). Production of bioactive metabolites with pharmaceutical and nutraceutical interest by submerged fermentation of Pleurotus ostreatus in a batch stirred tank bioreactor. Procedia Food Science, 1, 1746-1752.
Papaspyridi, L.-M., Katapodis, P., Gonou-Zagou, Z., Kapsanaki-Gotsi, E., & Christakopoulos, P. (2010). Optimization of biomass production with enhanced glucan and dietary fibres content by Pleurotus ostreatus ATHUM 4438 under submerged culture. Biochemical engineering journal, 50(3), 131-138.
Park, J., Kim, Y., Kim, S., Hwang, H., Cho, Y., Lee, Y., . . . Yun, J. (2002). Effect of agitation intensity on the exo‐biopolymer production and mycelial morphology in Cordyceps militaris. Letters in Applied Microbiology, 34(6), 433-438.
Petre, M., Teodorescu, A., Tuluca, E., Bejan, C., & Andronescu, A. (2010). Biotechnology of mushroom pellets producing by controlled submerged fermentation. Romanian Biotechnological Letters, 15(2), 50-55.
Robbins, E., & Seeley, R. (1977). Cholesterol lowering effect of dietary yeast and yeast fractions. Journal of Food Science, 42(3), 694-698.
Sari, M., Prange, A., Lelley, J. I., & Hambitzer, R. (2017). Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chemistry, 216, 45-51.
Shah, P., & Modi, H. (2018). Optimization of culture conditions for biomass production of Ganoderma lucidum. International Journal of Current Microbiology and Applied Sciences, 7(2), 1882-1889.
Stone, B., & Clark, A. (1992). Chemistry and Biology of (1→ 3)-β-Glucans. La Trobe University Press.
Synytsya, A., Mickova, K., Jablonsky, I., SLUKOVÁ, M., & Copikova, J. (2008). Mushrooms of genus Pleurotus as a source of dietary fibres and glucans for food supplements. Czech J. Food Sci, 26(6), 441-446.
Synytsya, A., Míčková, K., Synytsya, A., Jablonský, I., Spěváček, J., Erban, V., . . . Čopíková, J. (2009). Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate polymers, 76(4), 548-556.
Tang, Y.-J., Zhu, L.-W., Li, H.-M., & Li, D.-S. (2007). Submerged culture of mushrooms in bioreactors–challenges, current state-of-the-art, and future prospects. Food Technology and Biotechnology, 45(3), 221-229.
Tanriverdi, P., Yuksel, B. C., Rasa, K., Guler, G., Iskit, A. B., Guc, M. O., & Korkmaz, A. (2005). The effects of selective nitric oxide synthase blocker on survival, mesenteric blood flow and multiple organ failure induced by zymosan1. Journal of Surgical Research, 124(1), 67-73.
Tay, C. C., Liew, H. H., Yin, C.-Y., Abdul-Talib, S., Surif, S., Suhaimi, A. A., & Yong, S. K. (2011). Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean Journal of Chemical Engineering, 28(3), 825-830
Thammakiti, S., Suphantharika, M., Phaesuwan, T., & Verduyn, C. (2004). Preparation of spent brewer's yeast β‐glucans for potential applications in the food industry. International journal of food science & technology, 39(1), 21-29.
Vamanu, E. (2012). Biological activities of the polysaccharides produced in submerged culture of two edible Pleurotus ostreatus mushrooms. Journal of Biomedicine and Biotechnology, 2012.
Vetvicka, V., & Vetvickova, J. (2010). β1, 3-Glucan: Silver bullet or hot air? Open Glycoscience, 3, 1-6.
Vetvicka, V., & Vetvickova, J. (2014). Comparison of immunological effects of commercially available β-glucans. Appl Sci Rep, 1(2), 1-7.
Villares, A., Mateo-Vivaracho, L., & Guillamón, E. (2012). Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture, 2(4), 452-471.
Wang, J., Warris, A., Ellingsen, E., Jørgensen, P., Flo, T., Espevik, T., . . . Aasen, A. (2001). Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infection and immunity, 69(4), 2402-2406.
Wu, T., Zivanovic, S., Draughon, F. A., & Sams, C. E. (2004). Chitin and chitosan value-added products from mushroom waste. Journal of agricultural and food chemistry, 52(26), 7905-7910.
Zeković, D. B., Kwiatkowski, S., Vrvić, M. M., Jakovljević, D., & Moran, C. A. (2005). Natural and modified (1→ 3)-β-D-glucans in health promotion and disease alleviation. Critical reviews in biotechnology, 25(4), 205-230.
Zhu, F., Du, B., & Xu, B. (2016). A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids, 52, 275-288.
Volume 12, Issue 2
September 2023
Pages 231-244
  • Receive Date: 21 November 2022
  • Revise Date: 05 March 2023
  • Accept Date: 13 March 2023