Box-Wilson Design and Analysis for Extraction of Gelatin from Black Kingfish Skin

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

Chemical Engineering Section, Engineering Department, University of Technology and Applied Sciences (Salalah College of Technology), Salalah, Oman

چکیده

Gelatin is a derived, protein-based biopolymer used in nourishments to enhance consistency, strength, and flexibility. The aim of this research is to optimize the organic acid extraction of gelatin from fish skin. In this work, effect of parameters such as acid (based on its type) concentration (0.05-0.15 M), extraction temperature (40-60 °C), and types of acid (formic, acetic and propionic acids) on extraction yield of gelatin was examined at constant extraction time of 7 d and skin to acid mass ratio of 1:20. Collagenous material was separated from fish skin, and a basic protein, collagen, was hydrolyzed to gelatin, a derived protein. Response surface methodology (RSM) based Box-Wilson design was used for optimization and the optimization results revealed that the maximum gelatin extraction of 11.91% was achieved at 0.1 M formic acid and 52 °C. Thus, it would be concluded that the fish skin could be the potential feedstock for gelatin extraction.

کلیدواژه‌ها

موضوعات

© 2024, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Alipal, J., Mohd Pu'ad, N. A. S., Lee, T. C., Nayan, N. H. M., Sahari, N., Basri, H., . . . Abdullah, H. Z. (2021). A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 42, 240-250. https://doi.org/10.1016/j.matpr.2020.12.922
AOAC. (2005a). Ash of Animal Feed, Method: 925.05, In Official Methods of Analysis of AOAC International, 17th ed. . In: Gaithersburg: AOAC International.
AOAC. (2005b). Solids (total) and loss on drying (moisture) in flour, Method: 925.09, In Official Methods of Analysis of AOAC International, 17th ed. In: Gaithersburg: AOAC International.
Appell, M., Hurst, W. J., Finley, J. W., & deMan, J. M. (2018). Amino Acids and Proteins. In deMan, Finley, Hurst, & Lee (Eds.), Principles of Food Chemistry (pp. 117-164). Springer International Publishing. https://doi.org/10.1007/978-3-319-63607-8_3
Bidgoli, H., Zamani, A., & Taherzadeh, M. J. (2010). Effect of carboxymethylation conditions on the water-binding capacity of chitosan-based superabsorbents. Carbohydrate Research, 345(18), 2683-2689. https://doi.org/10.1016/j.carres.2010.09.024
Chandrasekaran, A. P., & Sivamani, S. (2018). Statistical Modeling And Optimization Of Pretreatment For Fermentable Sugars Production From Cotton Gin Waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(4), 400-405. https://doi.org/10.1080/15567036.2015.1075087
Cheow, C. S., Norizah, M. S., Kyaw, Z. Y., & Howell, N. K. (2007). Preparation and characterisation of gelatins from the skins of sin croaker (Johnius dussumieri) and shortfin scad (Decapterus macrosoma). Food Chemistry, 101(1), 386-391. https://doi.org/10.1016/j.foodchem.2006.01.046
Das, B., Paul, S., & Sharma, H. K. (2021). A review on bio-polymers derived from animal sources with special reference to their potential applications. Journal of Drug Delivery and Therapeutics, 11(2), 209-223. https://doi.org/10.22270/jddt.v11i2.4763
Díaz-Calderón, P., Flores, E., González-Muñoz, A., Pepczynska, M., Quero, F., & Enrione, J. (2017). Influence of extraction variables on the structure and physical properties of salmon gelatin. Food Hydrocolloids, 71, 118-128. https://doi.org/10.1016/j.foodhyd.2017.05.004
Duan, R., Zhang, J., Xing, F., Konno, K., & Xu, B. (2011). Study on the properties of gelatins from skin of carp (Cyprinus carpio) caught in winter and summer season. Food Hydrocolloids, 25(3), 368-373. https://doi.org/10.1016/j.foodhyd.2010.07.002
Fan, H., Dumont, M.-J., & Simpson, B. K. (2017). Extraction of gelatin from salmon (Salmo salar) fish skin using trypsin-aided process: optimization by Plackett–Burman and response surface methodological approaches. Journal of Food Science and Technology, 54(12), 4000-4008. https://doi.org/10.1007/s13197-017-2864-5
Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. E., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 25(8), 1813-1827. https://doi.org/10.1016/j.foodhyd.2011.02.007
Hodge, J. E., & Hofreiter, B. T. (1962). Determination of Reducing Sugars and Carbohydrates. In R.L. Whistler (Ed.), Methods in Carbohydrate Chemistry (pp. 380-394). New York: Academic Press.
Joaquin, A. A., Nirmala, G., & Kanakasabai, P. (2021). Response Surface Analysis for Sewage Wastewater Treatment Using Natural Coagulants. Polish Journal of Environmental Studies, 30(2). https://doi.org/10.15244/pjoes/120515
Killekar, V., Koli, J., Sharangdhar, S., & Metar, S. (2012). Functional properties of gelatin extracted from skin of black kingfish (Ranchycentron canadus). Indian journal of fundamental and applied life sciences, 2(3), 106-116.
Ling, G. N. (2014). Can we see living structure in a cell? Physiol Chem Phys Med NMR, 43, 1-53; discussion 53-73.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193(1), 265-275.
McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr, 49(6), 577-606. https://doi.org/10.1080/10408390902841529
Nalinanon, S., Benjakul, S., Visessanguan, W., & Kishimura, H. (2008). Improvement of gelatin extraction from bigeye snapper skin using pepsin-aided process in combination with protease inhibitor. Food Hydrocolloids, 22(4), 615-622. https://doi.org/10.1016/j.foodhyd.2007.01.012
Oberoi, K., Tolun, A., Sharma, K., & Sharma, S. (2019). Microencapsulation: An overview for the survival of probiotic bacteria. The Journal of Microbiology, Biotechnology and Food Sciences, 9(2), 280. https://doi.org/10.15414/jmbfs.2019.9.2.280-287
Sadasivam, S., & Manickam, A. (1992). Biochemical methods for agricultural sciences. Wiley Eastern Limited.
Saxer, S. S. (2010). Ultrathin, non-fouling coatings exploiting biomimetic surface anchorage concepts: a combination of electrostatic & coordinative binding mechanisms ETH Zurich]. https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/152535/eth-2491-01.pdf
Sila, A., Martinez-Alvarez, O., Haddar, A., Gómez-Guillén, M. C., Nasri, M., Montero, M. P., & Bougatef, A. (2015). Recovery, viscoelastic and functional properties of Barbel skin gelatine: investigation of anti-DPP-IV and anti-prolyl endopeptidase activities of generated gelatine polypeptides. Food Chem, 168, 478-486. https://doi.org/10.1016/j.foodchem.2014.07.086
Silva, E. V. C. d., Lourenço, L. d. F. H., & Pena, R. S. (2017). Optimization and characterization of gelatin from kumakuma (Brachyplatystoma filamentosum) skin. CyTA - Journal of Food, 15(3), 361-368. https://doi.org/10.1080/19476337.2016.1266391
Sivamani, S., & Baskar, R. (2018). Process design and optimization of bioethanol production from cassava bagasse using statistical design and genetic algorithm. Prep Biochem Biotechnol, 48(9), 834-841. https://doi.org/10.1080/10826068.2018.1514512
Sivamani, S., Baskar, R., & Chandrasekaran, A. P. (2020). Response surface optimization of acid pretreatment of cassava stem for bioethanol production. Environmental Progress & Sustainable Energy, 39(2), e13335. https://doi.org/10.1002/ep.13335
Soxhlet, F. v. (1879). Die gewichtsanalytische bestimmung des milchfettes. Polytechnisches Journal, 232(5), 461-465.
Tiwari, A., & Srivastava, R. B. (2012). Biotechnology in biopolymers: developments, applications & challenging areas. Smithers Rapra.
Vijayanand, M., Varahamoorthi, R., Kumaradhas, P., & Sivamani, S. (2021). Modelling and optimisation of hardness in citrate stabilised electroless nickel boron (ENi-B) coatings using back propagation neural network – Box Behnken design and simulated annealing – genetic algorithm. Transactions of the IMF, 99(5), 253-264. https://doi.org/10.1080/00202967.2021.1898172
Xu, X., Nikoo, M., Benjakul, S., Xu, G., Ramirez-Suarez, J. C., Ehsani, A., . . . Abbas, S. (2011). Characterization of gelatin from the skin of farmed Amur sturgeon Acipenser schrenckii. International Aquatic Research, 3(2), 135-145.
Zhang, Q., Wang, Q., Lv, S., Lu, J., Jiang, S., Regenstein, J. M., & Lin, L. (2016). Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Food Bioscience, 13, 41-48. https://doi.org/10.1016/j.fbio.2015.12.005
Zhang, Y., Dutilleul, P., Li, C., & Simpson, B. K. (2019). Alcalase-assisted production of fish skin gelatin rich in high molecular weight (HMW) polypeptide chains and their characterization for film forming capacity. LWT, 110, 117-125. https://doi.org/10.1016/j.lwt.2018.12.012
 
CAPTCHA Image
دوره 13، شماره 1
اسفند 1402
صفحه 5-10
  • تاریخ دریافت: 16 شهریور 1401
  • تاریخ بازنگری: 03 آذر 1401
  • تاریخ پذیرش: 20 آذر 1401