مقایسۀ روش‌های مختلف شکست سلولی و استخراج اسید چرب از ریزجلبک Dunaliella Salina

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دوره دکتری تخصصی، گروه شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 دانشیار، گروه شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

3 استاد، گروه اصلاح نژاد گیاهی و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

کمّیت و کیفیت چربی استخراج‌شده از ریزجلبک‌ها شدیداً متأثر از روش انتخابی برای تخریب و شکستن سلول‌ها و نوع حلال می‌باشد. در این پژوهش با مقایسۀ چندین ماده و روش متفاوت، شامل آنزیم (سلولاز و فلورزایم)، التراسوند و هموژنایزر با سطوح مختلف و حلال‌های آب، اتانول و متانول مؤثرترین شیوۀ تخریب سلول‌های ریزجلبکی Dunaliella Salina و بهترین حلال به‌منظور استخراج اسیدهای چرب موردبررسی قرار گرفت. براساس نتایج آنزیمی میزان روغن استخراجی با سطح سلولاز 3 درصد و فلورزایم 1/5 درصد برابر 2/04 گرم بر لیتر برحسب وزن خشک جلبک، التراسوند میزان روغن استخراجی 1/61 گرم بر لیتر در مدت زمان 3 دقیقه و ترکیب روش‌های آنزیمی و هموژنایزر 2/26 گرم بر لیتر ثبت گردید. ازطرفی میزان اسیدهای چرب C18:1، C16:0 و C18:2 استخراجی در بین 3 حلال مختلف اتانول به‌ترتیب به میزان 8/22، 1/08 و 5/18 درصد ثبت گردید. نتایج به‌دست‌آمده از این پژوهش، ترکیب روش‌های آنزیمی و هموژنایزر برای تخریب دیوارۀ سلولی و استخراج اسیدهای چرب با حلال اتانول را به‌‌عنوان راهکاری مناسب و مؤثر پیشنهاد می‌نماید.

کلیدواژه‌ها

American Oil Chemists' Society, & Firestone, D. (1994). Official methods and recommended practices of the American Oil Chemists' Society. AOCS press.
Azachi, M., Sadka, A., Fisher, M., Goldshlag, P., Gokhman, I., & Zamir, A. (2002). Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant physiology, 129(3), 1320-1329. doi:https://doi.org/10.1104/pp.001909
Bai, X., Naghdi, F.G., Ye, L., Lant, P., & Pratt, S. (2014). Enhanced lipid extraction from algae using free nitrous acid pretreatment. Bioresource Technology, 159, 36-40. doi:https://doi.org/10.1016/j.biortech.2014.01.133
Chen, H., Jiang, J-G., & Wu, G-H. (2009). Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase. Journal of agricultural and food chemistry, 57(14), 6178-6182. doi:https://doi.org/10.1021/jf900447r
Chisti, Y., & Moo-Young, M. (1986). Disruption of microbial cells for intracellular products. Enzyme and Microbial Technology, 8(4), 194-204. doi:https://doi.org/10.1016/0141-0229(86)90087-6
Choi, S-A., Jung, J-Y., Kim, K., Lee, J-S., Kwon, J-H., Kim, S.W., Yang, J-W., & Park, J-Y. (2014). Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioresource technology, 161, 469-472. doi:https://doi.org/10.1016/j.biortech.2014.03.153
Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., & Cintas, P. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry, 15(5), 898-902. doi:https://doi.org/10.1016/j.ultsonch.2007.10.009
El-Baky, H.H.A., El-Baz, F.K., & El-Baroty, G.S. (2004). Production of lipids rich in omega 3 fatty acids from the halotolerant alga Dunaliella salina. Biotechnology, 3(1), 102-108. doi:https:/doi.org/10.3923/biotech.2004.102.108
Gordillo, F.J., Goutx, M., Figueroa, F.L., & Niell, F.X. (1998). Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. Journal of Applied Phycology, 10(2), 135-144. doi:https://doi.org/10.1023/A:1008067022973
Grima, E.M., Belarbi, E.-H., Fernández, F.A., Medina, A.R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20(7-8), 491-515. doi:https://doi.org/10.1016/S0734-9750(02)00050-2
Günerken, E., D'Hondt, E., Eppink, M., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33(2), 243-260. doi:https://doi.org/10.1016/j.biotechadv.2015.01.008
Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143-169. doi:https://doi.org/10.1016/j.rser.2011.07.143
Islam, M.A., Magnusson, M., Brown, R.J., Ayoko, G.A., Nabi, M.N., & Heimann, K. (2013). Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies, 6(11), 5676-5702. doi:https://doi.org/10.3390/en6115676
Jin, G., Yang, F., Hu, C., Shen, H., & Zhao, Z.K. (2012). Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 111, 378-382. doi:https://doi.org/10.1016/j.biortech.2012.01.152
Kula, M.R. & Schütte, H. (1987). Purification of proteins and the disruption of microbial cells. Biotechnology Progress, 3(1), 31-42. doi:https://doi.org/10.1002/btpr.5420030107
Lee, S.-Y., Kim, S.-H., Hyun, S.-H., Suh, H.W., Hong, S.-J., Cho, B.-K., Lee, C.-G., Lee, H., & Choi, H.-K. (2014). Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochemistry, 49(6), 996-1004. doi:https://doi.org/10.1016/j.procbio.2014.02.022
McMillan, J.R., Watson, I.A., Ali, M., & Jaafar, W. (2013). Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment. Applied Energy, 103, 128-134. doi:https://doi.org/10.1016/j.apenergy.2012.09.020
Meier, R.L. (1955). Biological cycles in the transformation of solar energy into useful fuels. Solar energy research, 23, 179-183.
Morales-Sánchez, D., Tinoco-Valencia, R., Kyndt, J. & Martinez, A. (2013). Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnology for Biofuels, 6(1), 100
Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Druzian, J.I., De Souza, C.O., Vich, D.V., De Carvalho, G.C., & Nascimento, M.A. (2013). Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Research, 6(1), 1-13. doi: https://doi.org/10.1007/s12155-012-9222-2
Niu, J-F., Wang, G-C., & Tseng, C-K. (2006). Method for large-scale isolation and purification of R-phycoerythrin from red alga Polysiphonia urceolata Grev. Protein Expression and Purification, 49(1), 23-31. doi:https://doi.org/10.1016/j.pep.2006.02.001
Olofsson, M., Lamela, T., Nilsson, E., Bergé, J-P., Del Pino, V., Uronen, P., & Legrand, C. (2014). Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Marine drugs 12(4), 1891-1910. doi:https://doi.org/10.3390/md12041891
Peterson, C., Wagner, G., & Auld, D. (1983). Vegetable oil substitutes for diesel fuel. Transactions of the American Society of Agricultural Engineers, 26, 322-0327.
Qv, X.Y., Zhou, Q.F., & Jiang, J.G. (2014). Ultrasound-enhanced and microwave-assisted extraction of lipid from Dunaliella tertiolecta and fatty acid profile analysis. Journal of Separation Science, 37(20), 2991-2999. doi:https://doi.org/10.1002/jssc.201400458
Salama, E-S., Kim, H-C., Abou-Shanab, R.A., Ji, M.-K., Oh, Y-K., Kim, S-H., & Jeon, B-H. (2013). Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess and Biosystems Engineering, 36(6), 827-833. doi: https://doi.org/10.1007/s00449-013-0919-1
Santos, A., Janssen, M., Lamers, P., Evers, W., & Wijffels, R. (2012). Growth of oil accumulating microalga Neochloris oleoabundans under alkaline–saline conditions. Bioresource Technology, 104, 593-599. doi:https://doi.org/10.1016/j.biortech.2011.10.084
Song, M., Pei, H., Hu, W., & Ma, G. (2013). Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresource Technology, 141, 245-251. doi:https://doi.org/10.1016/j.biortech.2013.02.024
Taher, H., Al-Zuhair, S., Al-Marzouqi, A.H., Haik, Y., & Farid, M. (2014). Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass and bioenergy, 66, 159-167. doi:https://doi.org/10.1016/j.biombioe.2014.02.034
Talebi, A.F., Mohtashami, S.K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Mirzaei, H.H., Mirzajanzadeh, M., Shafaroudi, S.M., & Bakhtiari, S. (2013). Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2, 258-267. doi:https://doi.org/10.1016/j.algal.2013.04.003
Thompson Jr, G.A. (1994). Mechanisms of osmoregulation in the green alga Dunaliella salina. Journal of Experimental Zoology, 268(2), 127-132. doi:https://doi.org/10.1002/jez.1402680209
Vo, T., & Tran, D. (2014). Effects of salinity and light on growth of Dunaliella isolates. Journal of Applied & Environmental Microbiology, 2(5), 208-211.
Wang, D., Li, Y., Hu, X., Su, W. & Zhong, M. (2015). Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans. International Journal of Molecular Sciences, 16(4), 7707-7722. doi:https://doi.org/10.3390/ijms16047707
Yap, B.H., Crawford, S.A., Dumsday, G.J., Scales, P.J., & Martin, G.J. (2014). A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Research, 5, 112-120. doi:https://doi.org/10.1016/j.algal.2014.07.001
Zhang, Y., Deng, C., Cui, Y., & Cheng, J. (2016). Effect of different methods on cell disruption and oil extraction of microalgae. China Oils and Fats, 41(3), 61-65.
CAPTCHA Image
دوره 7، شماره 2
تیر 1397
صفحه 167-176
  • تاریخ دریافت: 05 شهریور 1396
  • تاریخ بازنگری: 11 دی 1396
  • تاریخ پذیرش: 21 دی 1396