The Production and Evaluation of Nanoliposomes Containing Bioactive Peptides Derived from Fish Wastes Using the Alkalase Enzyme

Document Type : Original Paper


1 Ph.D. Student of Sea Food Processing, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran

2 Associate Professor, Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran

3 Associate Professor, Department of Sea Food Processing, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran


In recent years, several studies have focused on the production of bioactive peptides from fish waste due to its beneficial effects on human health. Bioactive peptides with low molecular weight require protective methods to increase gastrointestinal stability and active absorption, controlled release and optimized efficacy during oral delivery. The aim of this study was to develop an oral phospholipid nanoliposomal system incorporated with bioactive peptides derived from fish protein hydrolysate (FPH) of common carp (Cyprinus carpio) in chitosan coating (0.05, 0.1, 0.5% w/v) by the alkalase enzyme. The results showed that chitosan coating greatly improved the stability of nanoliposomes. The average particle size was in the range of 339-459 nm with a zeta potential of -51.7 to +50 and a poly dispersity index (PDI) of 388- 0.487 in nanoliposomes. The Encapsulation Efficiency (EE%) values were significantly influenced by changes in the concentration of chitosan and the maximum EE% (86± 2.65) was observed in the nanoliposome coated with 0.5% chitosan. Studying the releasing rate of the peptide in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) showed the effect of coating on the stability of peptides in simulated biological environments. Also, the evaluation of antioxidant activity by DPPH and ABTS tests showed that there was a high activity of radical scavenging activity in nanoliposomes in chitosan-coated and non-coated samples. The results of this study showed that encapsulation of bioactive peptid in the liposomal system could be a useful approach for direct application of peptides with antioxidant potential in food products.


Agrawal, A. K., Harde, H., Thanki, K., & Jain, S. (2013). Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules, 15(1), 350-360. doi:
Bang, S., Hwang, I., Yu, Y., Kwon, H., Kim, D., & Park, H. J. (2011). Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. Journal of Microencapsulation, 28(7), 595-604. doi:
Cann, P., Read, N., Cammack, J., Childs, H., Holden, S., Kashman, R., . . . Swallow, K. (1983). Psychological stress and the passage of a standard meal through the stomach and small intestine in man. Gut, 24(3), 236-240.
Centenaro, G. S., Salas-Mellado, M., Pires, C., Batista, I., Nunes, M. L., & Prentice, C. (2014). Fractionation of protein hydrolysates of fish and chicken using membrane ultrafiltration: investigation of antioxidant activity. Applied biochemistry and biotechnology, 172(6), 2877-2893. doi:
Chakrabarti, S., Jahandideh, F., & Wu, J. (2014). Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress. BioMed Research International, 2014, 11. [in Press]. doi:
Chalamaiah, M., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chemistry, 135(4), 3020-3038. doi:
Channarong, S., Chaicumpa, W., Sinchaipanid, N., & Mitrevej, A. (2011). Development and evaluation of chitosan-coated liposomes for oral DNA vaccine: the improvement of Peyer’s patch targeting using a polyplex-loaded liposomes. Aaps Pharmscitech, 12(1), 192-200. doi:
Da Silva, I. M., Boelter, J. F., Da Silveira, N. P., & Brandelli, A. (2014). Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery. Journal of nanoparticle research, 16(7), 2479. [in Press]. doi:
Danquah, M., & Agyei, D. (2012). Pharmaceutical applications of bioactive peptides. OA biotechnology, 1(2), 1-7. doi:
Davis, S., Hardy, J., & Fara, J. (1986). Transit of pharmaceutical dosage forms through the small intestine. Gut, 27(8), 886-892. doi:
Diniz, F. M., & Martin, A. M. (1996). Use of response surface methodology to describe the combined effects of pH, temperature and E/S ratio on the hydrolysis of dogfish (Squalus acanthias) muscle. International Journal of Food Science & Technology, 31(5), 419-426. doi:
Drusch, S., Serfert, Y., Berger, A., Shaikh, M., Rätzke, K., Zaporojtchenko, V., & Schwarz, K. (2012). New insights into the microencapsulation properties of sodium caseinate and hydrolyzed casein. Food Hydrocolloids, 27(2), 332-338. doi:
Galla, N. R., Pamidighantam, P. R., Akula, S., & Karakala, B. (2012). Functional properties and in vitro antioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chemistry, 135(3), 1479-1484. doi:
Ghorbanzade, T., Jafari, S. M., Akhavan, S., & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146-152. doi:
Grit, M., Underberg, W. J. M., & Crommelin, D. J. A. (1993). Hydrolysis of Saturated Soybean Phosphatidylcholine in Aqueous Liposome Dispersions. Journal of Pharmaceutical Sciences, 82(4), 362-366. doi:
Hadian, Z., Sahari, M., Moghimi, H., Barzegar, M., & Abbasi, S. (2013). Preparation and characterizationof nanoliposomes containing docosahexaenoic and eicosapentaenoic acids by extrusion and probe sonication. Iranian Journal of  Nutrition Sciences & Food  Technology, 8(1), 219-230 (in persian).
Hosseini, S. F., Ramezanzade, L., & Nikkhah, M. (2017). Nano-liposomal entrapment of bioactive peptidic fraction from fish gelatin hydrolysate. International Journal of Biological Macromolecules, 105, 1455-1463. doi:
Kuboi, R., Shimanouchi, T., Yoshimoto, M., & Umakoshi, H. (2004). Detection of protein conformation under stress conditions using liposomes as sensor materials. Sensors and Materials, 16(5), 241-254.
Lassoued, I., Mora, L., Barkia, A., Aristoy, M.-C., Nasri, M., & Toldrá, F. (2015). Bioactive peptides identified in thornback ray skin's gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens. Journal of Proteomics, 128, 8-17. doi:
Li, Z. (2014). Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. (Master's thesis), Dalhousie University, Halifax, Nova Scotia. Retrieved from 
Liu, W., Ye, A., Liu, W., Liu, C., & Singh, H. (2013). Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. Journal of Dairy Science, 96(4), 2061-2070. doi:
Liu, Y., Liu, D., Zhu, L., Gan, Q., & Le, X. (2015). Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Research International, 74, 97-105. doi:
Mosquera, M., Giménez, B., da Silva, I. M., Boelter, J. F., Montero, P., Gómez-Guillén, M. C., & Brandelli, A. (2014). Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chemistry, 156, 144-150. doi:
Mozafari, M., Flanagan, J., Matia-Merino, L., Awati, A., Omri, A., Suntres, Z., & Singh, H. (2006). Recent trends in the lipid‐based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 86(13), 2038-2045. doi:
Nalinanon, S., Benjakul, S., Kishimura, H., & Shahidi, F. (2011). Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124(4), 1354-1362. doi:
Nasri, R., Younes, I., Jridi, M., Trigui, M., Bougatef, A., Nedjar-Arroume, N., . . . Karra-Châabouni, M. (2013). ACE inhibitory and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish protein hydrolysates: effect on meat lipid oxidation. Food Research International, 54(1), 552-561. doi:
Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R., & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), 238-242. doi:
Page, D. T., & Cudmore, S. (2001). Innovations in oral gene delivery: challenges and potentials. Drug Discovery Today, 6(2), 92-101. doi:
Picot, L., Ravallec, R., Fouchereau-Peron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., . . . Bourseau, P. (2010). Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. Journal of the Science of Food and Agriculture, 90(11), 1819-1826. doi:
Rasti, B., Jinap, S., Mozafari, M. R., & Yazid, A. M. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chemistry, 135(4), 2761-2770. doi:
Razali, A., Amin, A., & Sarbon, N. (2015). Antioxidant activity and functional properties of fractionated cobia skin gelatin hydrolysate at different molecular weight. International Food Research Journal, 22(2), 651-660.
Rekha, M. R., & Sharma, C. P. (2011). Chapter 8 - Nanoparticle Mediated Oral Delivery of Peptides and Proteins: Challenges and Perspectives. In C. Van Der Walle (Ed.), Peptide and Protein Delivery (pp. 165-194). Boston: Academic Press.
Segura-Campos, M., Chel-Guerrero, L., Betancur-Ancona, D., & Hernandez-Escalante, V. M. (2011). Bioavailability of Bioactive Peptides. Food Reviews International, 27(3), 213-226. doi:
Taheri, A., Sabeena Farvin, K. H., Jacobsen, C., & Baron, C. P. (2014). Antioxidant activities and functional properties of protein and peptide fractions isolated from salted herring brine. Food Chemistry, 142, 318-326. doi:
Vignesh, R., Haq, M. B., Devanathan, K., & Srinivasan, M. (2011). Pharmacological potential of Fish extracts. Archives of Applied Sciences Research, 3(5), 52-58.
Wang, B., Li, Z.-R., Chi, C.-F., Zhang, Q.-H., & Luo, H.-Y. (2012). Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle. Peptides, 36(2), 240-250. doi:
Wu, J., Zhao, L., Xu, X., Bertrand, N., Choi, W. I., Yameen, B., . . . MacLean, J. L. (2015). Hydrophobic cysteine poly (disulfide)‐based redox‐hypersensitive nanoparticle platform for cancer theranostics. Angewandte Chemie International Edition, 54(32), 9218-9223. doi:
Zhang, Y., Duan, X., & Zhuang, Y. (2012). Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides, 38(1), 13-21. doi:
Volume 8, Issue 1
April 2019
Pages 31-44
  • Receive Date: 12 October 2017
  • Revise Date: 02 January 2018
  • Accept Date: 15 January 2018