تهیۀ فیلم نانوکامپوزیت سلولز باکتریایی/پلی‌پیرول- اکسید روی و بررسی ویژگی‌های فیزیکومکانیکی، ضدمیکروبی و آنتی‌اکسیدانی آن

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشیار، گروه علوم و صنایع غذایی، دانشگاه ارومیه، ارومیه، ایران

2 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشگاه غیرانتفاعی آفاق ارومیه، ارومیه، ایران

3 استادیار، گروه علوم و صنایع غذایی، دانشگاه علوم پزشکی مراغه، ارومیه، ایران

چکیده

در این تحقیق نانوذرات پلی‌پیرول (PPy) و نانوکامپوزیت پلی‌پیرول-اکسید روی (PPy-ZnO) به روش شیمیایی روی فیلم سلولز باکتریایی در حضور کلرید آهن 3 سنتز و فیلم‌های هادی الکتریسیته تهیه شد. اندازه، شکل و مورفولوژی ذرات سنتزشده با استفاده از تکنیک میکروسکوپ الکترونی روبشی بررسی شد. نتایج به‌دست‌آمده نشان دادند پلی‌پیرول‌های سنتزشده کروی‌شکل و در ابعاد 50-150 نانومتر می‌باشند درحالی‌که ذرات نانوکامپوزیت پلی‌پیرول-اکسید روی دانه‌ای‌شکل بوده و در ابعاد 30-120 نانومتر می‌باشند. خواص مکانیکی شامل کرنش تا نقطۀ شکست و مقاومت کششی، خواص ضدمیکروبی و ضدقارچی (باکتری اشرشیاکلی و قارچ آسپرژیلوس نایجر) و نیز خاصیت آنتی‌اکسیدانی و هدایت الکتریکی فیلم‌های تهیه‌شده موردمطالعه قرار گرفتند. نتایج به‌دست‌آمده نشان داد که در پی اضافه‌کردن پلی‌پیرول مقاومت الکتریکی کاهش یافت درنتیجه جریان الکتریکی فیلم‌ها افزایش یافت. افزودن نانوذرات (پلی‌پیرول و اکسید روی) باعث تضعیف خواص مکانیکی (کرنش در نقطۀ شکست و مقاومت کششی) شده و استحکام کششی کاهش یافت. قدرت مهارکنندگی رادیکال‌‌های آزاد فیلم سلولز باکتریایی با افزودن اکسید روی به‌طور قابل‌توجهی افزایش یافت. سنتز و افزایش زمان سنتز پلی‌پیرول روی فیلم سلولز تأثیر مثبت در ایجاد خاصیت ضدمیکروبی و ضدقارچی فیلم‌ها داشت ولی نانوذرات اکسید روی بیشتر روی خاصیت ضدقارچی مؤثر می‌باشد. 

کلیدواژه‌ها

سعادتمند، م.، یزدانشناس، م.، رضایی زارچی، س.، یوسفی تلوری، ب. و نگهداری، م. (1391). خاصیت ضدمیکروبی نانو کامپوزیت کیتوزان -TiO2 و به کارگیری آن روی گاز استریل بیمارستانی. علوم آزمایشگاهی، 6(1)، 59-72.
عیسی‌زاده، ح. و خادمیان، م. (1385). تهیه پلی پیرول و کامپوزیتهای آن در محلولهای گوناگون با استفاده از مواد افزودنی مختلف و مطالعه شکل شناسی و رسانندگی فیلم تهیه شده. مجله علوم و تکنولوژی پلیمر، 19(2)، 131-136. doi:https://doi.org/10.22063/jipst.2006.837
قنبرزاده، ب.، پزشکی‌نجف‌آبادی، ا. و الماسی، ه. (1390). فیلم‌های خوراکی فعال در بسته‌بندی مواد غذایی. علوم و صنایع غذایی ایران، 8(32)، 123-135.
نوری، م. (1385). مطالعه رسانایی الکتریکی نخ‌های پوشش یافته با پلی آنیلین و پلی پیرول زیر کشش. مجله علوم و تکنولوژی پلیمر، 22(5)، 373-379 doi:https://doi.org/10.22063/jipst.2009.708
Ali, A., Ambreen, S., Maqbool, Q., Naz, S., Shams, M. F., Ahmad, M., . . . Zia, M. (2016). Zinc impregnated cellulose nanocomposites: Synthesis, characterization and applications. Journal of Physics and Chemistry of Solids, 98, 174-182. doi:https://doi.org/10.1016/j.jpcs.2016.07.007
ASTM. (2010). Standard test methods for tensile properties of thin plastic sheeting. D882-10: Annual book of ASTM. Philadelphia, PA: American Society for Testingand Materials.
Ebrahimiasl, S., Zakaria, A., Kassim, A., & Basri, S. N. (2015). Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities. International Journal of Nanomedicine, 10, 217-227. doi:https://doi.org/10.2147/IJN.S69740
Eisa Zadeh, H., & Khademian, M. (2006). Preparation of Polypyrrole and Its Composites in Various Solutions Using Different Additives and Studying the orphology and Conductivity of the Prepared Film. Iranian Journal of Polymer Science and Technology, 19(2), 131-136. doi:https://doi.org/10.22063/jipst.2006.837 (in Persian)
Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2011). Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22(3-4), 408-413. doi:https://doi.org/10.1016/j.foodcont.2010.09.011
Esa, F., Tasirin, S. M., & Rahman, N. A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113-119. doi:https://doi.org/10.1016/j.aaspro.2014.11.017
Gajjar, P., Pettee, B., Britt, D. W., Huang, W., Johnson, W. P., & Anderson, A. J. (2009). Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. Journal of Biological Engineering, 3(1), 9. doi:https://doi.org/10.1186/1754-1611-3-9
Ghanbarzadeh, B., Pezeshki Najafabadi, A., & Almasi, H. (2011). Antimicrobial edible films for food packaging. Food Science and Technology, 8(32), 123-135. (in Persian)
Ko, H.-U., Mun, S., Min, S. K., Kim, G.-W., & Kim, J. (2014). Fabrication of Cellulose ZnO Hybrid Nanocomposite and Its Strain Sensing Behavior. Materials, 7(10), 7000-7009. doi:https://doi.org/10.3390/ma7107000
Lee, C. H., An, D. S., Lee, S. C., Park, H. J., & Lee, D. S. (2004). A coating for use as an antimicrobial and antioxidative packaging material incorporating nisin and α-tocopherol. Journal of Food Engineering, 62(4), 323-329. doi:https://doi.org/10.1016/S0260-8774(03)00246-2
Nawaz, H. R., Solangi, B. A., Zehra, B., & Nadeem, U. (2011). Preparation of nano zinc oxide and its application in leather as a retanning and antibacterial agent. Canadian Journal on Scientific and Industrial Research, 2(4), 164-170.
Nouri, M. (2009). The Electrical Conductivity of Stretched Polyaniline and Polypyrrole Coated Yarns. Iranian Journal of Polymer Science and Technology, 22(5), 373-379. doi:https://doi.org/10.22063/jipst.2009.708 (in Persian)
Pang, J., Liu, X., Zhang, X., Wu, Y., & Sun, R. (2013). Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials, 6(4), 1270-1284. doi:https://doi.org/10.3390/ma6041270
Pirsa, S., Shamusi, T., & Kia, E. M. (2018). Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles. Journal of Applied Polymer Science, 135(34), 46617. (in Press). doi:https://doi.org/10.1002/app.46617
Ram, M. K., Yavuz, Ö., Lahsangah, V., & Aldissi, M. (2005). CO gas sensing from ultrathin nano-composite conducting polymer film. Sensors and Actuators B: Chemical, 106(2), 750-757. doi:https://doi.org/10.1016/j.snb.2004.09.027
Saadatmand, M. M., Yazdanshenas, M. E., Rezaei-Zarchi, S., Yousefi-telori, B., & Negahdary, M. (2012). Investigation of anti-microbial properties of chitosan-Tio2 Nanocomposite and its use on sterile gauze pads. Medical Laboratory Journal, 6(1), 59-72. (in Persian)
Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. doi:https://doi.org/10.1016/j.foodhyd.2013.07.012
Siracusa, V., Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643. doi:https://doi.org/10.1016/j.tifs.2008.07.003
Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770-775. doi:https://doi.org/10.1016/j.foodhyd.2010.04.003
Vigneshwaran, N., Kumar, S., Kathe, A., Varadarajan, P., & Prasad, V. (2006). Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology, 17(20), 5087.
Wang, H., Bian, L., Zhou, P., Tang, J., & Tang, W. (2013). Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. Journal of Materials Chemistry A, 1(3), 578-584.
Zhang, L., Jiang, Y., Ding, Y., Povey, M., & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9(3), 479-489. doi:https://doi.org/10.1007/s11051-006-9150-1
CAPTCHA Image
دوره 8، شماره 1
اردیبهشت 1398
صفحه 79-90
  • تاریخ دریافت: 22 خرداد 1397
  • تاریخ بازنگری: 26 شهریور 1397
  • تاریخ پذیرش: 31 شهریور 1397