نوع مقاله : مقاله کامل پژوهشی
نویسندگان
1 دانش آموخته کارشناسی ارشد، گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
2 دانشیار، گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
3 استادیار، گروه مهندسی شیمی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
چکیده
هدف از مطالعۀ حاضر، بررسی اثر غلظت محلول اسمزی (30، 45 و 60 درصد وزنی/وزنی)، دمای محلول اسمزی (30، 40 و 50 درجۀ سانتیگراد) و زمان غوطهوری (4، 5 و 6 ساعت)، بر خروج آب (WL)، جذب مادۀ جامد (SG)، کاهش وزن (WR)، محتوی ویتامین C، چروکیدگی، نسبت بازآبپوشی (RR) و شاخصهای رنگ (L، a و b) طی آبگیری اسمزی- خشککردن ورقههای شلغم بود. روش سطح پاسخ (RSM) نیز برای یافتن شرایط بهینه مورداستفاده قرار گرفت. نتایج نشان داد که طی آبگیری اسمزی نمونههای شلغم، متغیرهای دمای محلول اسمزی، غلظت محلول و زمان غوطهوری تأثیر معنیداری بر پارامترهای انتقال جرم (WL، SG و WR)، محتوی ویتامین C، چروکیدگی، RR و شاخص رنگ (L) داشتند. شرایط بهینۀ آبگیری اسمزی برای شلغم، دمای محلول اسمزی 30/81 درجۀ سانتیگراد، غلظت محلول اسمزی 60 درصد و زمان غوطهوری 6 ساعت بود. تحت این شرایط، مقادیر پاسخهای WL، SG، WR، چروکیدگی، نسبت بازآبپوشی (RR)، محتوی ویتامین C و شاخصهای رنگی L، a و b بهترتیب 83/10، 12/91 و 70/19 درصد، 27/76، 4/19 و 11/64 (میلیگرم در 100 گرم مادۀ خشک) و 33/85، 25/49 و 15/91 بود. نتایج پژوهش حاضر میتواند جهت فراوری حداقلی برشهای شلغم با استفاده از آبگیری اسمزی و خشککردن بُعدی نمونهها مورداستفاده قرار گیرد.
کلیدواژهها
Ahmed, I., Qazi, I. M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science & Emerging Technologies, 34, 29-43. doi:https://doi.org/10.1016/j.ifset.2016.01.003
Alam, M. S., Amarjit, S., & Sawhney, B. K. (2010). Response surface optimization of osmotic dehydration process for aonla slices. Journal of Food Science and Technology, 47(1), 47-54. doi:https://doi.org/10.1007/s13197-010-0014-4
Alizadeh, H., Ghiamirad, M., & Ebrahimiasl, S. (2014). The study of antibacterial activity of alcoholic extract of Brassica Napus L. on some of pathogenic bacteria. Medical Journal of Tabriz University of Medical Sciences and Health Services, 35(6), 74-79. (in Persian)
AOAC. (2000). Official Methods of Analysis (17th ed.). In Association of Official Analytical Chemist. Washington DC, USA.
Azoubel, P. M., El-Aouar, Â. A., Tonon, R. V., Kurozawa, L. E., Antonio, G. C., Murr, F. E. X., & Park, K. J. (2009). Effect of osmotic dehydration on the drying kinetics and quality of cashew apple. International journal of food science & technology, 44(5), 980-986. doi:https://doi.org/10.1111/j.1365-2621.2008.01783.x
Bakalis, S., & Karathanos, V. T. (2005). Study of Rehydration of Osmotically Pretreated Dried Fruit Samples. Drying Technology, 23(3), 533-549. doi:https://doi.org/10.1081/DRT-200054129
Chandra, S., & Kumari, D. (2015). Recent Development in Osmotic Dehydration of Fruit and Vegetables: A Review. Critical reviews in food science and nutrition, 55(4), 552-561. doi:https://doi.org/10.1080/10408398.2012.664830
Derossi, A., Severini, C., Del Mastro, A., & De Pilli, T. (2015). Study and optimization of osmotic dehydration of cherry tomatoes in complex solution by response surface methodology and desirability approach. LWT - Food Science and Technology, 60(2, Part 1), 641-648. doi:https://doi.org/10.1016/j.lwt.2014.10.056
Ebrahim Rezagah, M., Kashaninezhad, M., Mirzaei, H. E., & Khomeiri, M. (2009). Effect of temperature, osmotic solution concentration and mass ratio on kinetics of osmotic dehydration of button mushroom (Agaricus bisporus). Journal of Agricultural Sciences and Natural Resources, 16(1-A). (in Persian)
Eren, İ., & Kaymak-Ertekin, F. (2007). Optimization of osmotic dehydration of potato using response surface methodology. Journal of Food Engineering, 79(1), 344-352. doi:https://doi.org/10.1016/j.jfoodeng.2006.01.069
Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3), 979-985. doi:https://doi.org/10.1016/j.jfoodeng.2006.06.033
Gharehbeglou, P., Askari, B., Homayouni, A., S Hoseini, S., Tavakoli Pour, H., & Homayouni, A. (2014). Investigating of drying kinetics and mathematical modeling of turnip. Agricultural Engineering International : The CIGR e-journal, 16, 194-204.
Giraldo, G., Talens, P., Fito, P., & Chiralt, A. (2003). Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango. Journal of Food Engineering, 58(1), 33-43. doi:https://doi.org/10.1016/S0260-8774(02)00331-X
Iranian National Standardization Organization. (2000). Friuts , vegetables and derived products determination ofascorbic acid (Vitamin C) - (Routine method). (ISIRI Standard No. 5609, 1st Edition). Retrieved from http://standard.isiri.gov.ir/StandardView.aspx?Id=9120 (in Persian)
İspir, A., & Toğrul, İ. T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2), 166-180. doi:https://doi.org/10.1016/j.cherd.2008.07.011
Kek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91(4), 495-506. doi:https://doi.org/10.1016/j.fbp.2013.05.003
Lazarides, H. N., Katsanidis, E., & Nickolaidis, A. (1995). Mass transfer kinetics during osmotic preconcentration aiming at minimal solid uptake. Journal of Food Engineering, 25(2), 151-166. doi:https://doi.org/10.1016/0260-8774(94)00006-U
Lewicki, P. P. (1998). Some remarks on rehydration of dried foods. Journal of Food Engineering, 36(1), 81-87. doi:https://doi.org/10.1016/S0260-8774(98)00022-3
Noshad, M., Mohebbi, M., Shahidi, F., & Ali Mortazavi, S. (2012). Multi-Objective Optimization of Osmotic–Ultrasonic Pretreatments and Hot-Air Drying of Quince Using Response Surface Methodology. Food and Bioprocess Technology, 5(6), 2098-2110. doi:https://doi.org/10.1007/s11947-011-0577-8
Phisut, N. (2012). Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal, 19(1), 7-18.
Rafigh, S. M., Yazdi, A. V., Vossoughi, M., Safekordi, A. A., & Ardjmand, M. (2014). Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN. International journal of biological macromolecules, 70, 463-473. doi:https://doi.org/10.1016/j.ijbiomac.2014.07.034
Ramallo, L. A., & Mascheroni, R. H. (2005). Rate of water loss and sugar uptake during the osmotic dehydration of pineapple. Brazilian Archives of Biology and Technology, 48(5), 761-770.
Rastogi, N. K., & Raghavarao, K. S. M. S. (2004). Mass transfer during osmotic dehydration of pineapple: considering Fickian diffusion in cubical configuration. LWT - Food Science and Technology, 37(1), 43-47. doi:https://doi.org/10.1016/S0023-6438(03)00131-2
Shahidi, F., Mohebbi, M., Noshad, M., Ehtiati, A., & Fathi, M. (2012). Effect of osmotic and ultrasound pretreatments on some quality characteristics of air-dried banana Chemistry. Iranian Food Science and Technology Research Journal, 7(4), 263-272. doi:https://doi.org/10.22067/ifstrj.v7i4.11705
Singh, B., Panesar, P. S., Nanda, V., & Kennedy, J. F. (2010). Optimisation of osmotic dehydration process of carrot cubes in mixtures of sucrose and sodium chloride solutions. Food Chemistry, 123(3), 590-600. doi:https://doi.org/10.1016/j.foodchem.2010.04.075
Sutar, P. P., & Gupta, D. K. (2007). Mathematical modeling of mass transfer in osmotic dehydration of onion slices. Journal of Food Engineering, 78(1), 90-97. doi:https://doi.org/10.1016/j.jfoodeng.2005.09.008
Teles, U. M., Fernandes, F. A. N., Rodrigues, S., Lima, A. S., Maia, G. A., & Figueiredo, R. W. (2006). Optimization of osmotic dehydration of melons followed by air-drying. International Journal of Food Science & Technology, 41(6), 674-680. doi:https://doi.org/10.1111/j.1365-2621.2005.01134.x
Vieira, G. S., Pereira, L. M., & Hubinger, M. D. (2012). Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function. International Journal of Food Science & Technology, 47(1), 132-140. doi:https://doi.org/10.1111/j.1365-2621.2011.02818.x
Yadav, A. K., & Singh, S. V. (2014). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 51(9), 1654-1673. doi:https://doi.org/10.1007/s13197-012-0659-2