بررسی ارزش غذایی، ویژگی‌های میکروبی و حسی پودر استخوان ماهی کپور نقره‌ای (Hipophthalmichthys molitrix) پرورشی

نوع مقاله : مقاله کامل پژوهشی

نویسنده

مرکز ملی تحقیقات فرآوری آبزیان، پژوهشکده آبزی‌پروری آب‌های داخلی، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، انزلی، ایران

چکیده

مطالعۀ حاضر با هدف تهیۀ پودر از استخوان ماهی کپور نقره‌ای با روش قلیایی و بررسی ویژگی‌های تغذیه‌ای، حسی و میکروبی انجام شد. در این پژوهش کربنات کلسیم به‌عنوان شاهد استفاده شد. مقادیر پروتئین (18/51 درصد)، چربی (5/11 درصد)، رطوبت (5/58 درصد) و خاکستر (70/82 درصد) در پودر استخوان ماهی بودند. راندمان تهیۀ پودر 98/66 درصد تعیین شد. برخلاف پودر استخوان ماهی عناصر معدنی سیلیسیوم، آلومینیوم، باریم و کروم در نمونۀ شاهد مشاهده نشدند. فسفر در پودر استخوان (81580 میلی‌گرم بر کیلوگرم) در مقایسه با شاهد (310 میلی‌گرم بر کیلوگرم) بیشتر بود (0/05>P). اما کلسیم در تیمار آزمایشی (325000 میلی‌گرم بر کیلوگرم) در مقایسه با شاهد (388000 میلی‌گرم بر کیلوگرم) کمتر بود (0/05>P). ازنظر رنگ و پذیرش کلی بین تیمارهای آزمایشی و شاهد تفاوت معنی‌دار مشاهده نشد (0/05>P). در میان اسیدهای چرب اشباع، تک‌زنجیرۀ غیراشباع و چند غیراشباع به‌ترتیب اسیدهای پالمیتیک (22/73 درصد)، الایدیک (43/74 درصد) و لینولئیک (7/35 درصد) بالاترین مقادیر را در پودر استخوان دارا بودند. همچنین مقادیر کل اسیدهای آمینۀ ضروری شامل ترئونین، والین، لیزین، ایزولوسین، متیونین، هیستیدین و فنیل آلانین 218/29 میلی‌گرم بر کیلوگرم بود. هیچ‌گونه میکرواورگانیسمی شامل قارچ، اشریشیاکلی و سالمونلا در تیمارها مشاهده نشد. ازآنجاکه پودر استخوان به شکل انبوه از گونه‌های مختلف ماهی قابل تولید بوده و سرشار از ترکیبات تغذیه‌ای است، ازاین‌رو برای غنی‌سازی محصولات به صنعت غذایی پیشنهاد می‌گردد.

کلیدواژه‌ها

موضوعات

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Amitha, C. V., Raju, I. P., Lakshmisha, P., Kumar, A., Gajendra, A. S., & Pal, J. (2019). Nutritional composition of fish bone powder extracted from three different fish filleting waste boiling with water and an alkaline media. Journal of Current Microbiology and Applied Sciences, 8(2), 7.
Andrews, W. H. r., Wang, H., Jacobson, A., Ge, B., Zhang, G., & Hammack, T. S. (2022). Chapter 5-Salmonella. In FDA's Bacteriological Analytical Manual. Food and Drug Adminastration.
AOAC. (1990). AOAC Official Methods of Analysis, Association Official Agriculture Chemists.AOAC Standard No.9.CFR 318.19 (b). In Official Methods of Analysis of AOAC International U.S. Patent and Trademark Office.
AOAC. (2000a). Calcium, copper, iron, magnesium, manganese, phosphorus, potassium, and zinc in infant formula. Inductively coupled plasma emission spectroscopic method. Method 984.27. In Official Methods of Analysis of AOAC International. U.S. Patent and Trademark Office.
AOAC. (2000b). Fish and Marine Products Treatment and Preparation of Sample No. 937.07. In Official Methods of Analysis of AOAC International. U.S. Patent and Trademark Office.
AOAC. (2005). Official Methods of Analysis Manual, AOAC Standard No. 935.14 and 992.24. In Official Methods of Analysis of AOAC International. U.S. Patent and Trademark Office.
Asikin, A. N., Kusumaningrum, I., & Hidayat, T. (2019). Effect of knife-fish bone powder addition on characteristics of starch and seaweed kerupuk as calcium and crude fiber sources. Current Research in Nutrition and Food Science, 7(2), 584. https://doi.org/10.12944/CRNFSJ.7.2.27
Benjakul, S., Mad‐Ali, S., Senphan, T., & Sookchoo, P. (2017). Biocalcium powder from precooked skipjack tuna bone: Production and its characteristics. Journal of Food Biochemistry, 41(6), e12412. https://doi.org/10.1111/jfbc.12412
Bhenjapaipong, S., Puttisaowapak, N., Sutloet, P., & Sompongse, W. (2021). Production of fish ball fortified with fish bone powder from Salmon. Thai Science and Technology Journal,, 29(4), 11.
Demerjian, P. R. (2018). Calculating efficiency with financial accounting data: Data envelopment analysis for accounting researchers. Available at SSRN 2995038.
Desai, A. S., Brennan, M. A., & Brennan, C. S. (2018). Effect of fortification with fish (Pseudophycis bachus) powder on nutritional quality of durum wheat pasta. Foods, 7(4), 62. https://doi.org/10.3390/foods7040062
FAO. (2020). The State of World Fisheries and Aquaculture. United Nations: Food and Agricultural Organisation of the United Nations.
Feng, P., Weagant, S. D., Grant, M. A., Burkhardt, W., Shellfish, M., & Water, B. (2002). BAM Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria. Bacteriological analytical manual, 13(9), 1-13.
Gilbert, S. W. (2013). Applying the Hedonic Method Technical Note 1811. USA: Department of Commerce, National Institute of Standards and Technology.
Gupta, K., Kutagulla, T., Shwetha, K., & Nm, S. (2018, December). Fortification of Extruded Food Products Using Fish Bone Powder as the Natural Calcium Source 8th International Food Convention (IFCON), 
Idowu, A. T., Benjakul, S., Sinthusamran, S., Sae-leaw, T., Suzuki, N., Kitani, Y., & Sookchoo, P. (2020). Effect of alkaline treatment on characteristics of bio-calcium and hydroxyapatite powders derived from salmon bone. Applied Sciences, 10(12), 4141. https://doi.org/10.3390/app10124141
IFO. (2021). Statistical yearbook of Iranian fisheries during the years 2014-2016. Iranian Fisheries Organization. (in Persian)
Iran National Standards Organization (INSO). (2008). Milk and its products-determination of calcium, sodium, potassium and magnesium- atomic absorption spectrometry method. (INSO Standard  No. 10780, 1st Edition). http://standard.isiri.gov.ir/StandardView.aspx?Id=7407 (in Persian)
Iran National Standards Organization (INSO). (2016a). Livestock, poultry and aquatic feed - measurement of amino acids cotent. (INSO Standard No. 10699, 1st Edition). http://standard.isiri.gov.ir/StandardView.aspx?Id=8910 (in Persian)
Iran National Standards Organization (INSO). (2016b). Measurement of lead, cadmium, copper, iron and zinc by atomic absorption spectrophotometry. (INSO Standard No. 9266, 1st Edition). http://standard.isiri.gov.ir/StandardView.aspx?Id=182 (in Persian)
Iran National Standards Organization (INSO). (2022). Vegetable oils and fats - gas chromatography of methyl esters of fatty acids. Part 2: Preparation of methyl esters of fatty acids. (INSO  Standard No. 13126-2, 1st Revision). http://standard.isiri.gov.ir/StandardView.aspx?Id=56816 (in Persian)
Kandyliari, A., Mallouchos, A., Papandroulakis, N., Golla, J. P., Lam, T. T., Sakellari, A., Karavoltsos, S., Vasiliou, V., & Kapsokefalou, M. (2020). Nutrient composition and fatty acid and protein profiles of selected fish by-products. Foods, 9(2), 190. https://doi.org/10.3390/foods9020190
Malde, M. K., Bügel, S., Kristensen, M., Malde, K., Graff, I. E., & Pedersen, J. I. (2010). Calcium from salmon and cod bone is well absorbed in young healthy men: a double-blinded randomised crossover design. Nutrition & metabolism, 7(1), 1-9. https://doi.org/10.1186/1743-7075-7-61
Murillo, S., Ardoin, R., Watts, E., & Prinyawiwatkul, W. (2022). Effects of Catfish (Ictalurus punctatus) Bone Powder on Consumers’ Liking, Emotions, and Purchase Intent of Fried Catfish Strips. Foods, 11(4), 540. https://doi.org/10.3390/foods11040540
Nawaz, A., Li, E., Irshad, S., Hammad, H., Liu, J., Shahbaz, H. M., Ahmed, W., & Regenstein, J. M. (2020). Improved effect of autoclave processing on size reduction, chemical structure, nutritional, mechanical and in vitro digestibility properties of fish bone powder. Advanced Powder Technology, 31(6), 2513-2520. https://doi.org/10.1016/j.apt.2020.04.015
Nemati, M., Huda, N., & Ariffin, F. (2017). Development of calcium supplement from fish bone wastes of yellowfin tuna (Thunnus albacares) and characterization of nutritional quality. International Food Research Journal, 24(6), 2419-2426.
Nemati, M., Kamilah, H., Huda, N., & Ariffin, F. (2016). In vitro calcium availability in bakery products fortified with tuna bone powder as a natural calcium source. International journal of food sciences and nutrition, 67(5), 535-540. https://doi.org/10.1080/09637486.2016.1179269
Njoroge, J. G., & Lokuruka, M. N. (2020). Sensory acceptability of cookies fortified with tilapia fish bone powder. Food and Nutritional Sciences Research, 2(1), 94-101. https://doi.org/10.37512/800
Nuraeni, A., Rostini, I., Dhahiyat, Y., & Pratama, R. I. (2020). Milkfish bone flour fortification as a source of calcium on don’t preference level. Global Scientific Journal, 8(4), 269-270.
Odeyemi, O. A., Burke, C. M., Bolch, C. C., & Stanley, R. (2018). Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. International Journal of Food Microbiology, 280, 87-99. https://doi.org/10.1016/j.ijfoodmicro.2017.12.029
Pyz-Łukasik, R., & Paszkiewicz, W. (2018). Species variations in the proximate composition, amino acid profile, and protein quality of the muscle tissue of grass carp, bighead carp, siberian sturgeon, and wels catfish. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/2625401
Ratnamanjari Senapati, S., Swain, H. S., & Mishra, R. (2014). By products from fish bone. Aquaculture International, 2014(2), 3.
Savlak, N., Çağındı, Ö., Erk, G., Öktem, B., & Köse, E. (2020). Treatment Method Affects Color, Chemical, and Mineral Composition of Seabream (Sparus aurata) Fish Bone Powder from by-Products of Fish Fillet. Journal of Aquatic Food Product Technology, 29(6), 592-602. https://doi.org/10.1080/10498850.2020.1775742
Seifzadeh, M., Golshahi, E., & Safiyari, S. (2018). Study the concentrations of lead and cadmium in farmed rainbow trout (Oncorhynchus mykiss) in Talesh of Guilan. Journal of Animal Science Research, 28(2), 65-79. (in Persian)
Tournas, V., Stack, M. E., Mislivec, P. B., Koch, H. A., & Bandler, R. (2001). BAM Chapter 18: yeasts, molds and mycotoxins. Bacteriological analytical manual, 8.
Wang, F., Fu, L., Bao, X., & Wang, Y. (2017). The spoilage microorganisms in seafood with the existed quorum sensing phenomenon. Journal of Food Microbiology, 1(1), 14-19.
Wulandari, P., & Kusumasari, S. (2019). Effect of extraction methods on the nutritional characteristics of milkfish (Chanos chanos Forsskal) bone powder. IOP Conference Series: Earth and Environmental Science,
Yin, T., Du, H., Zhang, J., & Xiong, S. (2016). Preparation and characterization of ultrafine fish bone powder. Journal of Aquatic Food Product Technology, 25(7), 1045-1055. https://doi.org/10.1080/10498850.2015.1010128
Zhao, F., Zhuang, P., Song, C., Shi, Z.-h., & Zhang, L.-z. (2010). Amino acid and fatty acid compositions and nutritional quality of muscle in the pomfret, Pampus punctatissimus. Food Chemistry, 118(2), 224-227. https://doi.org/10.1016/j.foodchem.2009.04.110
CAPTCHA Image
دوره 12، شماره 1
خرداد 1402
صفحه 105-120
  • تاریخ دریافت: 22 مرداد 1401
  • تاریخ بازنگری: 23 مهر 1401
  • تاریخ پذیرش: 24 مهر 1401