نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 استادیار گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد

4 دانشیار گروه شیمی، دانشکده علوم، دانشگاه پیام نور مشهد

چکیده

بررسی پروتئولیز پس از کشتار عضله یکی از بهترین راه ها در شناسایی چگونگی ترد شدن گوشت می‌باشد. در پژوهش حاضر، pH از لحظه صفر پس از کشتار و تغییرات پروتئین‌های میوفیبریلی عضله M. Gastrocnemius pars externa با استفاده از روش الکتروفورز ژل پلی اکریل آمید- سدیم دودسیل سولفات SDS-PAGE، از روز اول تا چهاردهم در دو جنس نر و ماده شترمرغ که با دو روش مرسوم (بدون بیهوشی) و اعمال شوک الکتریکی (بیهوشی در 80 ولت/ 500 میلی آمپر/ 10 ثانیه) کشتار شدند، مورد مطالعه قرار گرفت. بر اساس نتایج به دست آمده، اعمال بیهوشی پیش از کشتار، به طور معنی داری سبب افزایش سرعت گلیکولیز و کاهش سریع pH تا 3 ساعت اولیه پس از کشتار شد. همچنین جنس ماده در شترمرغ کاهش pH سریع تری داشت (0/05>P). بررسی پروفایل الکتروفورتیک پروتئین‌های میوفیبریلی نشان داد بیشترین تغییرات مربوط به تجزیه تدریجی تروپونین T تا روز چهاردهم و همزمان ظهور پپتیدهایی با وزن مولکولی 25 تا 32 کیلودالتون بود (0/05>P). میوزین، α-اکتنین و دسمین طی زمان تردشدن دستخوش تجزیه قرار گرفت و همزمان پلی پپتیدهای با وزن مولکولی 60 و 100 کیلودالتونی ظهور یافت (0/05>P). بر اساس نتایج تجزیه واریانس، اثر جنس و شرایط کشتار به دلیل تسریع نزول pH، در تغییر اغلب پروتئین ها معنی دار ارزیابی شد (0/05>P) زیرا سوبسترای آنزیم های کالپائین بودند.

کلیدواژه‌ها

محمدی، ا. 1385. نوپروری شترمرغ در ایران. انتشارات اطلاعات.

Bandman, E. & Zdanis, D. 1988. An immunological method to asses protein degradation in postmortem muscle. Meat Science, 22: 1–19.

Buts, B., Claeys, E. & Demyer, D. 1986. Relation between concentrations of troponin-T, 30,000-Dalton and titin on SDS–PAGE and tenderness of bull longissimus dorsi. 32nd European Meeting of Meat Research Workers, 24 – 29 August, Ghent, Belgium.

Channon, H. A., Payne, A. M. & Warner, R. D. 2002. Comparison of CO2 stunning with manual electrical stunning (50 Hz) of pigs on carcass and meat quality. Meat Science, 60: 63–68.

Claeys, E., Uytterhaegen, L., Buts B. & Demeyer, D. 1995. Quantification of beef myofibrillar proteins by SDS-PAGE. Meat Science, 39: 177-193.

Choi, Y.M., Lee, S.H., Choe, J.H., Rhee, S.M., Lee, S.K., Joo S.T. & Kim, B.C. 2010. Protein solubility is related to myosin isoforms, muscle fiber types, meat quality traits, and postmortem protein changes in porcine longissimus dorsi muscle. Livestock Science, 127: 183–191.

Choi, Y.M. & Kim, B.C. 2009. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality (review). Livestock Science, 122: 105–118.

Culler, R. D., Parrish, F. C., Smith, G. C. & Cross. H. R. 1978. Relationship of myofibril fragmentation Index to certain chemical, physical and sensory characteristics of bovine longissmus muscle. Journal of Food Science, 43: 1177.

Dayton, W. R., Goll, D. E., Stromer, M. H., Reville, W. J., Zeece, M. G. & Robson, R. M. 1975. Some properties of a Ca2+ activated protease that may be involved in myofibrillar protein turnover. Cold Spring Harbor Conferences in Cell Proliferation, Volume 2. In: Proteases and biological control (E., Reich, D. B., Rifkin, & E., Shaw, eds). Cold Spring Harbor, New York

Dunker, A. K. & Reuckert, R. R. 1969. Journal of Biology Chemical, 244: 5047.

Dransfield, E. 1994. Tenderness of meat, poultry, and fish. Chapman and Hall, London, 289-315.

Geesink, G.H., Kuchay, S., Chishti A.H. & Koohmaraie, M. 2006. Micro-calpain is essential for postmortem proteolysis of muscle proteins. Journal of Animal Science, 84: 2834-2840.

Gheisari, H. R., Aminlari, M. & Shekarforoush, S.H. 2009. A comparative study of the biochemical and functional properties of camel and cattle meat during frozen storage. Veterinarski Arhive, 79 (1): 51-68.

Gil, M. Ramírez J.A., Pla, M., Ariño, B., Hernández, P., Pascual, M., Blasco, A., Guerrero, L., Hajós, G., Szerdahelyi, E.N. & Oliver, M.Á. 2006. Effect of selection for growth rate on the ageing of myofibrils, meat texture properties and the muscle proteolytic potentional of m. longissmus in rabbits. Meat Science, 72: 121-129.

Goll, D. E., Otsuka, Y., Nagainis, P. A., Shannon, J. D., Sathe, S. K. & Muguruma, M. 1983. Role of muscle proteinases in maintenance of muscle integrity and mass. Journal of Food Biochemistry, 7: 137-177.

Ho, C. Y., Stromer, M. H. & Robson, R. M. 1994. Identification of the 30 kDa polypeptide in postmortem skeletal muscle as a degradation product of troponin-T. Biochimie, 76: 369–375.

Hoffman, L. C., Botha, S. C. & Britz, T. J. 2007. Muscle pH and temperature changes in hot- and cold-deboned ostrich Muscularis gastrocnemius, pars intra and Muscularis iliofibularis during the first 23 h post-mortem. Meat Science, 75: 343-349.

Huff-Lonergan, E., Zhang W. & Lonergan, M. S. 2010. Biochemistry of postmortem muscle- lessons on mechanisms of meat tenderization (review). Meat Science, 86: 184-195.

Hwang, H. I., Devine C. E. & Hopkins, D. L. 2003. The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness (review). Meat Science, 65: 677- 691.

Jiang, S. T. 1998. Contribution of muscle proteinases to meat tenderization (review). Proceedings of the National Science Council, 22 (3): 97-107.

Kandeepan, G., Anjaneyyulu, A. S. R., Kondiaiah, N., Mendiratta, S. K. & Lakshmanan, V. 2009. Effect of age and gender on the processing characteristics of buffalo meat. Meat Science, 83: 10-14.

Kemp, C. M., Sensky, P. L., Bardsley, R. G., Buttery, P. J. & Parr, T., 2010. Tenderness-an enzymatic view. Meat Science, 84: 284-256.

Kent, M.P., Spencer, M.J. & Koohmaraie, M. 2004. Postmortem proteolysis is reduced in transgenic mice over expressing calpastatin. Journal of Animal Science, 82: 794-801.

Koohmaraie, M. & Geesink, G. H. 2006. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science, 74: 34-43.

Koohmaraie, M. 1994. Muscle proteinases and meat aging. Meat Science, 36: 93- 104.

Koohmaraie, M., et al.1995. Calpastatin-based methods for predicting meat tenderness. ECCEAMST, USA.

Laemmli, U. K. 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227: 680 – 685.

Lamare, M. Taylor, R.G., Farout, L., Briand, Y. & Briand, M. 2002. Changes in proteasome activity during postmortem aging of bovine muscle. Meat Science, 61: 199- 204.

Linares, M. B., Bornez, R. & Vergara. H. 2007. Effect of different stunning systems on meat quality of light lamb. Meat Science, 76: 675–681.

Neath, K. E., Del Barrio, A.N., Lapitanb, R.M., Herrerab, J.R.V., Cruzb, L.C., Fujiharac, T., Muroyad, S., Chikunid, K.,  Hirabayashia, M. & Kanai, Y. 2007. Differences in tenderness and pH decline between water buffalo meat and beef during postmortem aging. Meat Science, 75: 299-505.

Nowak, B., Mueffling, T. V. & Hartung. J. 2007. Effect of different carbon dioxide concentrations and exposure times in stunning of slaughter pigs: Impact on animal welfare and meat quality. Meat Science, 75: 300–308.

Olson, D. G., Parrish, F. C., Dayton, W. R. & Goll. D. E. 1977. Effect of postmortem storage and calcium activated factor on the myofibrilllar proteins of bovine skeletal muscle. Journal of Food Science, 42: 117-123.

O’Shea, J. M., Robson, R. M., Huiatt, T. W., Hartzer, M. K. & Stromer, M. H. 1979. Purified desmin from adult mammalian skeletal muscle: a peptide mapping comparison with desmins from adult mammalian and avian smooth muscle. Biochemistry Biophysical Research Communications, 89: 972-980.

Ouali, A. 1990. Meat tenderization: possible causes and mechanism (a review). Journal of Muscle Foods, 1: 129-165.

Ouali, A. 1992. Proteolytic and physicochemical mechanisms involved in meat texture development. Biochimie, 74: 251-265.

Paleari, M. A., Corsico, P. & Beretta, G. 1995. The ostrich: breeding, reproduction, slaughtering and national value of the meat. Fleischwirtschaft, 75: 1120-1123.

Rosenvold, K. & Andersen, H. J. 2003. Factors of significance, for pork quality (review). Meat Science, 64: 219–237.

Sales, J. & Mellet, F. D. 1996. Post-mortem pH decline in different ostrich muscles. Meat Science, 42 (2): 235-238.

Salm, C. P., Forrest, J. C., Aberle, E. D., Mills, E. W., Snyder, A. C. & Judge. M. D. 1983. Bovine muscle shortening and protein degradation after electrical stimulation, excision and chilling. Meat Science, 8: 163–183.

Sentandreu, M. A., Coulis, G. & Ouali, A. 2002. Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends in Food Science and Technology, 13: 400–421.

Skaara, T. & Regenstein, M. 1990. The structure and properties of myofibrillar proteins in beef, poultry and fish. Journal of Muscle Foods, 1: 269-291.

Smulders, F. J. M., Toldra, F., Flores, J. & Prieto, M. 1992. New technologies for meat and meat products (eds). ECCEAMST, Utrecht.

Taylor, R.G., Geesink, G.H., Thompson, V.F., Koohmaraie, M. & Goll, D. E. 1995. Is Z-disk degradation responsible for postmortem tenderization? Journal of Animal Science, 21: 1351-1367.

Thomas, A. R., Gondoza, H., Hoffman, L. C., Oosthuizen, V. & Naudé, R. J. 2004. Roles of the 20S proteasome, and cathepsins B, L, H and D, in ostrich meat tenderisation. Meat Science, 67: 113-120.

Van Jaarsveld, F. P. 1998. The role of calcium-dependent proteases and cathepsins in postmortem proteolysis and tenderness of ostrich meat. PhD thesis, University of Port Elizabeth, Port Elizabeth, South Africa.

Vergara, H., Linares, M. B., Berruga, M. I. & Gallego, L. 2005. Meat quality in suckling lambs: Effect of pre-slaughter handling. Meat Science, 69: 473–478.

Yates, L. D. Dutson, T. R., Caldwell, J. & Carpenter, Z. L. 1983. Effect of temperature and pH on the postmortem degradation of myofibrillar proteins. Meat Science, 1: 157-179.